Определение белков с помощью электрофореза

0

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

 

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«Харьковский политехнический институт»

Кафедра биотехнологии, биофизики и аналитической химии

 

 

 

 

Курсовая работа

по курсу: «Физико - химические методы анализа»

на тему: «Определение белков с помощью электрофореза»

 

 

 

 

 

Выполнил: студент группы ХТ-57б

Нобатова Огулсенем Аганиязовна

Проверил:

Доцент Самойленко С. И.

 

 

 

 

 

 

 

 

Харьков 2018

                                                  ОГЛАВЛЕНИЕ

Введение……………………………………………………………………………..3                                                                                          1. Электрофорез……………………………………………………………………...4    

1.1. Основы электрофореза…………………………..…………………………...4    

1.2. Варианты метода электрофореза белков…………………………………....5

1.3. Оборудования для электрофореза. Форезная камера……………….……..6

  1. Гели для электрофореза………………………………………………………..…9
  2. 2.1. Плотность геля……………………………………………………………….9
  3.       2.2. Полиакриламидныи  гель (ПААГ)…………………………………..........11

          2.3. Процесс полимеризации ПААГ…………………………………………..12

           2.4. Выбор концентраций мономеров…………………………………………14

          2.5. Миграция белков в геле…………………………………………………...17    

  3. Красители используемые для проявления белков ………….......................19                                               Заключение………………………………………………………………………...20                                                                                                                                                                                                                                Список использованных источников……………………………………………...21

 

 

 

 

 

 

Введение

            Электрофорез  (от электро- и греч. переносить) -- это электрокинетическое явление перемещения частиц дисперсной фазы (коллоидных или белковых растворов) в жидкой или газообразной среде под действием внешнего электрического поля. Впервые было открыто профессорами Московского университета П. И. Страховым и Ф. Ф. Рейссом в 1809 году.

            С помощью электрофореза удаётся покрывать мелкими частицами поверхность, обеспечивая глубокое проникновение в углубления и поры. Различают две разновидности электрофореза: катафорез -- когда обрабатываемая поверхность имеет отрицательный электрический заряд (то есть подключена к отрицательному контакту источника тока) и анафорез -- когда заряд поверхности положительный.

              Электрофорез применяют в физиотерапии, для окраски автомобилей, в химической промышленности, для осаждения дымов и туманов, для изучения состава растворов и др. Электрофорез является одним из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии.

          Цели и задачи данной курсовой работы: - изучение истории электрофореза - изучение теоретических основ электрофореза  - изучение методик использования электрофореза в полиакриламидном геле для анализа различных белков - умение использовать правильную плотность геля - изучение сути процесса полимеризации ПААГ - изучение миграции белков в геле - изучение красителей, используемых для проявления белков.

  1. Электрофорез. 1.1. Основы электрофореза.

     Электрофорез – это перемещение заряженных частиц в растворе (в зависимости от знака их суммарного электрического заряда) к аноду или катоду под действием электрического поля. Поскольку скорость движения молекул в электрическом поле зависит от их заряда, формы и размера, то электрофорез может быть использован для их разделения.              Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят в основном от рН среды. Если через этот раствор начать пропускать электрический ток, то под действием электрического поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров макромолекулы приобретают разные скорости, и в этом – сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул мигрирующих с одной и той же скоростью. Однако в жидкости нельзя избежать конвекции, которая деформирует и смешивает разделяющиеся зоны, поэтому обычно электрофорез проводят в гелеобразной среде. Наличие сетки геля приводит к тому, что теперь фракционируемые макромолекулы сталкиваются с нитями полимера, образующего сетку геля, что увеличивает эффективное трение о среду, а следовательно, снижает скорость движения молекул. Очевидно, что препятствия для миграции становятся особенно серьезными, если средний диаметр пространственных ячеек геля оказывается соизмерим с размерами макромолекул. В этом случае решающее влияние на электрофоретическую подвижность различных молекул и степень разделения оказывает соотношение их линейных размеров. Электрофорез позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности.              Биологические макромолекулы – белки, нуклеиновые кислоты, полисахариды и др. – находятся в водном растворе в виде частиц, несущих определённый электрический заряд. Заряд макромолекулы определяется входящими в ее состав группами, способными к электролитической диссоциации. Степень диссоциации групп зависит от многих факторов, в частности, от рН среды. Общий заряд биологической макромолекулы также может изменяться при её взаимодействии с ионами или другими молекулами.                 Наиболее широкое применение электрофорез получил для анализа и очистки белков и нуклеиновых кислот, хотя этот метод может быть использован и для других заряженных биологических молекул, таких как сахара, аминокислоты, пептиды, нуклеотиды и др. Для фракционирования белков, нуклеиновых кислот и их фрагментов в настоящее время используют почти исключительно гель-электрофорез. Наиболее широко используются полиакриламидные (ПААГ) гели и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. В качестве других «носителей» жидкой фазы широко используют пленки из ацетата целлюлозы, фильтровальную бумагу, тонкие слои силикагеля, целлюлозы, сефадекса и др. В некоторых случаях, например для разделения низкомолекулярных веществ, эти системы имеют свои преимущества.

 

1.2. Варианты метода электрофореза белков.

Существует множество разновидностей и модификаций данного метода, которые используются (или использовались в определённые периоды развития биохимии) в различных областях: 1) электрофорез в свободных средах (без поддерживающей среды)  2) электрофорез с подвижной границей 3) зональный электрофорез без поддерживающей среды 4) капиллярный электрофорез 5) зональный электрофорез в поддерживающей среде с капиллярной структурой  6) электрофорез на фильтровальной бумаге 7) электрофорез белков на ацетат-целлюлозной мембране 8) электрофорез в колонках и блоках гранулированной поддерживающей среды 9) электрофорез белков в ПААГ 10) электрофорез белков в крахмальном геле 11) электрофорез белков в агарозном геле 12) электрофорез в полиакриламидном геле.

 

1.3. Оборудования для электрофореза. Форезная камера.

     Для проведения практикума необходима лаборатория (примерная площадь - 20 м х 20 м) оснащенная следующим оборудованием и расходными материалами: 1. Вертикальная камера для электрофореза с комплектующими; 2. Источник питания с регулировкой силы тока или/и напряжения; 3. Система гель-документирования; 4. Холодильник (+4º), с морозильной камерой (-20º) для хранения растворов; 5. Электронные аналитические весы и набор шпателей для взвешивания; 6. Система для получения деионизированной воды (milliQ); 7. Магнитная мешалка с набором магнитных якорей; 8. Мерные цилиндры (100 и 500 мл), мерные стеклянные стаканы. 9. Стеклянные бутыли для хранения растворов. 10. Один комплект пипеток-дозаторов (10, 200 и 1000 мкл); 11. Пробирки конусные (15 и 50 мл), пробирки типа эппендорф (0,5 и 1,5 мл), наконечники для пипеток (20, 200, 1000, 5000 мкл). 12. Список необходимых реактивов: акриламид, N,N' –метиленбисакриламид, Трис, додецилсульфат натрия (SDS), персульфат аммония, N,N,N',N' – тетраметилэтилендиамин (ТЕМЕД), глицин, трицин, глицерин, β-меркаптоэтанол, ЭДТА, Бромфеноловый синий, Кумасси R 250, Кумасси G 250, изопропанол, уксусная кислота, глутаровый альдегид, набор маркеров молекулярных масс белков (15-150 кДа) и набор низкомолекулярных маркеров молекулярных масс белков и пептидов (1-30 кДа).

                                                                

                              

Рисунок – 1.3. Оборудование для электрофореза.

Форезная камера: Форезные камеры бывают двух типов: с двумя или с одним платиновым электродом. * камеры с двумя платиновыми электродами можно подключать к источнику напряжения в любой полярности. * камеры с одним - только одним способом!!! Обычно на таких камерах указана полярность подключения. Будьте внимательны. Подготовка камеры: мыть губкой, смоченной детергентом; сполоснуть раз 10 водопроводной водой; сполоснуть раза 2-3 дистиллятом. Форезные камеры имеют два уязвимых места: * сравнительно легко при мытье отодрать

платиновый электрод; * если при споласкивании или переносе держать камеру за один бортик, то в этом бортике появится трещина.                                                                       Рисунок – 1.3. Вертикальная форезная камера.

 Прибор для электрофореза в вертикальных трубках (в разрезе)

1 — верхний электродный резервуар; 2 — центральный цилиндр; 3 — верхний платиновый электрод; 4 — резиновая прокладка; 5 — трубочка с гелем; 6 — нижний электродный резервуар; 7 —нижний платиновый электрод. Для электрофореза белков обычно используют пластины шириной 8 — 14 см и длиной (в направлении электрофореза) 8 —28 см. Электрофорез нуклеиновых кислот и их фрагментов, например при секвенировании, нередко ведут в больших пластинах размером 33  43 см, что диктуется максимальным размером рентгеновской пленки для авторадиографии. Для разделения гидролизатов тРНК Пиртл и др. недавно использовали пластины   ПААГ длиной 90 см.

 

  1. Гели для электрофореза. 2.1. Плотность геля.

          Стандартно используют следующие обозначения: Т – процентное отношение суммарной массы обоих мономеров к объему раствора,  С – процентное отношение массы бисакриламида к общей массе обоих мономеров. (Т = акриламид + мономер, образующий сшивки) и количество сшивающего агента в процентах от общего количества мономеров (С):                                                       Т = (a + b)/m x 100 %                                                        C = b/(a + b) x 100 %

a – количество акриламида; b – количество мономера, образующего сшивки (бисакриламида); m – объем буфера, мл. Т - обычно варьируется в пределах 3-30%, а С 1-5%. Выбор значений С и Т определяется диапазоном фракционирования белков и ограничивается механическими и адсорбционными свойствами геля. Для крупнопористых гелей необходимо увеличивать степень сшивки (повышать С до 3-5%), для мелкопористых гелей величина С не должна превышать 1-2%.            На первый взгляд чем больше Т, тем мельче поры, но это не всегда так, поскольку ПААГ не является регулярной пространственной решеткой с жесткими ячейками определенного среднего размера. При малых значениях С он представляет собой скорее длинные нити, заполняющие весь объем и лишь в отдельных точках случайно сшитые между собой. Такая система не может быть внутренне жесткой. Поэтому мигрирующие в геле макромолекулы, по-видимому, могут раздвигать гибкие длинные участки линейных полимеров акриламида, при этом миграция молекул замедляется и происходит своеобразное трение их о гель. Однако жестких ограничений на размер мигрирующих молекул такая система не накладывает, и это очень существенно.            Чем выше концентрация заполимеризованного акриламида, тем меньше размер пор в геле:                                         

                                                           p = 1,5 d / Ö` c р – размер пор в ангстремах c – объемная концентрация акриламида d – диаметр молекулы акриламида              Чем больше содержание акриламида (а величина Т, в основном, определяется им), тем гуще нити полимера, меньше промежутки между ними и сильнее трение. Увеличение содержания «сшивки» (С) сначала повышает жесткость геля, т.к. средняя длина свободных участков нитей уменьшается. Трение при этом увеличивается, а миграция биополимеров в геле замедляется. Однако далее картина меняется, экспериментально показано, что с увеличением С выше 10% тормозящий эффект геля (при одних и тех же значениях Т) ослабляется. При С>15% гель ведет себя как крупнопористый даже при высоких значениях Т. Внутренняя структура геля в этом случае приобретает, по-видимому, совсем иной характер. Благодаря частым сшивкам оказывается энергетически выгодным и вероятным многократное связывание нескольких параллельно идущих нитей в своего рода пучки, которые также образуют хаотически сшитую пространственную сетку. Эта сетка оказывается действительно жесткой – нити в пучках раздвинуть невозможно. Зато между пучками полимерных нитей образуются достаточно большие пустоты, заполненные жидкой фазой геля, по которым могут свободно мигрировать молекулы биополимеров. Поэтому содержание сшивки С в геле должно быть в пределе 2-5%.            Соотношение между акриламидом и сшивающим агентом определяют механические и физические свойства геля. Для гелей с концентрацией Т 5 – 15 % С рекомендуется выбирать в пределах 2-4 %. Для выбора С была предложена следующая эмпирическая формула:                                                     С (%) = 6,5 – 0,3 Т (%)             Концентрация полиакриламидных гелей, используемых для разделения макромолекул с различными молекулярными массами Концентрация геля Т, % | Концентрация бисакриламида С, % | Пределы разделения, дальтоны |15-2010-155-1052-5 | 0,20,32 – 356 | 1 х 104 - 4 х 1044 х 104 - 1 х 1051 х 105 - 3 х 1053 х 105 - 5 х 105выше 5 х 105|

          2.2. Полиакриламидныи  гель (ПААГ).

          Исходные материалы:           Акриламид (СН2 = СН — CONH2) представляет собой белый кристаллический порошок. Хорошо очищенный продажный препарат содержит не более 0,05% акриловой кислоты. Его 5%-ный водный раствор должен иметь рН не ниже 5, а оптическая плотность 1%-ного раствора при 290 нм (А290) не должна превышать 0,15. Такой препарат можно использовать без дополнительной очистки или перекристаллизации. Акриламид следует хранить сухим, в темной посуде, предпочтительно на холоду. В этих условиях он может храниться до года. Акриламид токсичен (воздействует на кожу и нервную систему), поэтому отвеши-вать и растворять его следует в перчатках и под тягой. Недостаточно чистый пре-парат можно перекристаллизовать. Для этого 70 г акриламида растворяют в 1 л хлороформа при 50°, фильтруют при этой же температуре, затем охлаждают до  — 20°, быстро промывают кристаллы холодным хлороформом и высушивают в вакуум-эксикаторе. Для освобождения от УФ-поглощающих примесей акриламид можно обработать активированным углем. Для этого в маточный 30 — 40%-ный водный раствор акриламида в смеси с метиленбисакриламидом добавляют акти-вированный уголь (примерно 50 г/л), суспензию перемешивают в течение 30 мин и фильтруют сначала через бумажный, а затем через стекловолокнистый фильтр.             NN'-Метиленбисакриламид («Бис») — используют в качестве «сшивки» линейных полимеров акриламида. Продажные препараты, содержащие не более 0,02% акриловой кислоты, не нуждаются в дополнительной очистке. В случае необходимости Бис можно перекристаллизовать из ацетона (12 г/л) в тех же усло-виях, что и акриламид. Условия хранения и токсичность — такие же, как у акриламида.                В качестве «сшивки» иногда используют этилендиакрилат — СН2 = СН — СО — O — СН2 — СН2 — О — СО — СН = СН2, а также NN'-диаллилтартардиамид (ДАТД) —

 CH2 = CH — CH2 — NH —CO — CH(OH) — CH(OH) — CO — NH — CH2 — CH = CH2. С их помощью получают «растворимые» гели. В первом случае эфирную связь можно разорвать обработкой геля щелочью или водным раствором пипери-дина. Гели, сшитые ДАТД, растворяются за 20 — 30 мин при комнатной темпера-туре в 2%-ной йодной кислоте. 

 

2.3. Процесс полимеризации ПААГ.

             При подготовке определенной серии опытов удобно заранее приготовить концентрированный (30 — 40%) водный раствор акриламида и метиленбисакрил-амида с определенным соотношением обоих мономеров. Такой раствор можно хранить в холодильнике в течение нескольких недель. Так же хранят и маточный раствор буфера, например 10-кратной концентрации.              ТЕМЕД хранится хорошо, а персульфат аммония растворяют в воде непо-средственно перед началом опыта. Для приготовления геля маточные растворы мономеров и буфера смешивают в такой пропорции, чтобы получить нужную конечную концентрацию акриламида и буфера, дополняют до расчетного объема водой и вносят ТЕМЕД. После этого раствор деаэрируют в колбе Бунзена, присоединенной к водоструйному насосу, добавляют расчетный объем раствора персульфата и заливают в трубку или между стеклами для формирования пластин. При правильном выборе концентраций персульфата и ТЕМЕД полимеризация занимает 30 — 40 мин.Ее следует вести вдали от яркого источника света.                   Рассмотрим некоторые факторы, влияющие на этот процесс. Наибольшую опасность для нормального протекания полимеризации акриламида представляет растворенный в воде кислород, молекула которого является опреде-ленного рода бирадикалом и потому способна оборвать цепную реакцию свободно-радикальной полимеризации акриламида. Деаэрация смеси растворов необходима именно для удаления из нее растворенного кислорода. Ее можно вести достаточно энергично и с перемешиванием — так, чтобы жидкость при пониженном давлении закипела, но как только интенсивное выделение пузырей газа закончится, деа- эрацию следует прекратить, не допуская заметного испарения воды. Обычно эта процедура занимает несколько минут при комнатной температуре. Кислород воздуха в контакте с раствором мономеров может помешать полимеризации, поэто-му на поверхность раствора осторожно наслаивают до высоты 3 — 5 мм деаэри-рованную кипячением воду или изобутанол. Наслаивать следует по стенке формы через иглу от шприца с помощью перистальтического насоса. Им же удобно отсо-сать воду после окончания полимеризации геля. Вначале граница между гелем и водой исчезает, но затем вновь появляется, что указывает на окончание процесса полимеризации. Если в качестве инициатора используют рибофлавин, то форму с раствором мономеров освещают люминесцентной лампой «дневного света» с расстояния около 5см в течение30 — 45мин. Уже указывалось, что рибофлавин является более эффективным инициатором, чем персульфат. Кроме того, продукты его распада не опасны для белков и нуклеиновых кислот, в то время как ион пер-сульфата может вступать в реакцию с белками, создавая артефакты при их фракци-онировании. В тех случаях, когдаэто существенно, персульфат удаляют путем предварительного электрофореза («преэлектрофореза») геля до внесения в него препарата, однако полностью это сделать не удается. Тем не менее в последние годы в качестве инициатора предпочтение отдают персульфату, поскольку при работе с рибофлавином довольно трудно подобрать оптимальную степень деаэри-рования растворов. С одной стороны, растворенный кислород препятствует полимеризации, а с другой — он необходим, хотя и в небольшом количестве, для самого процесса инициации с участием рибофлавина. Полимеризация — экзотер-мический процесс, поэтому в случае высокой концентрации акриламида во избежа-ние образования пузырей газа и нарушения однородности геля необходимо обес-печить отвод тепла. Вместе с тем скорость полимеризации увеличивается с ростом температуры за счет ускорения образования свободных радикалов. Этим можно воспользоваться для замедления полимеризации: при охлаждении геля на 1° ее продолжительность увеличивается примерно на 2 мин. Полимеризацию гелей, содержащих более 15% акриламида, лучше вести на холоду. Гель получается наи-более однородным, если время полимеризации составляет 30 — 40 мин. Обычно этого добиваются эмпирически, подбирая оптимальную концентрацию персуль-фата. Она может варьировать в пределах от 0,02 до 0,2% в зависимости от концен-трации акриламида и качества самого персульфата. С увеличением содержания акриламида концентрацию персульфата приходится уменьшать. Имеет смысл предварительно внести различные количества данного препарата персульфата в ряд пробирок с рабочим раствором мономеров акриламида, наблюдая продолжи-тельность полимеризации в них.

 

2.4. Выбор концентраций мономеров.

               Для удобства изложения используются следующие обозначения: Т — процентное отношение суммарной массы обоих мономеров к объему их раствора, С — процентное отношение массы метиленбисакриламида к общей массе обоих мономеров. Величина Т практически варьирует в пределах 3 — 30%, а С, как правило, составляет 1—5%, что соответствует отношению акриламид/Бис в пределах от 99:1 по 19:1. Однако в некоторых особых случаях, рассмотренных ниже, имеет смысл увеличивать С до 20% и более. При указании значений Т и С значок «%» далее будет опущен. Для крупнопористых гелей надо увеличивать степень сшивки (повышать величину С до 3 — 5), т. е. отношение акриламид/Бис брать в пределах от 35:1до20:1. При этом происходит одновременное повышение прочности геля и ухудшение его способности прилипать к стеклу — гель как бы «замыкается». Мелкопористые гели (T около 20) при высоком содержании «сшивки» оказываются хрупкими и мутными, поэтому для них величина С не должна превышать 1 — 2.                 Неправильно было бы считать ПААГ регулярной пространственной решеткой с жесткими ячейками определенного среднего размера. При малых зна-чениях С он представляет собой скорее длинные нити, заполняющие весь объем и лишь вот дельных точках случайным образом сшитые между собой. Расстояние между этими точками вдоль нити (при C  2) в среднем равно 50 — 100 мономерных единиц. Такая система не может быть внутренне жесткой. Мигрирующие в геле мак- ромолекулы, по-видимому, могут раздвигать гибкие длинные участки линей-ных полимеров акриламида. Разумеется, на это расходуется энергия, миграция мо-лекул замедляется и происходит своеобразное «трение» их о гель. Однако жестких ограничений на размер мигрирующих молекул такая система не накладывает, и это очень существенно. Чем больше содержание акриламида, тем гуще нити полимера, меньше промежутки между ними и сильнее трение. Увеличение содержания «сшивки» (С) сначала повышает жесткость геля, так как средняя длина свободных участков нитей уменьшается. Трение при этом увеличивается, а миграция биопо-лимеров в геле замедляется, — именно этого и можно было ожидать. Возвращаясь к ПААГ, следует указать, что гели с очень высоким содержанием метиленбисак-риламида (С > 15) хрупки, легко отстают от стенок, непрозрачны и сильно окраши-ваются. Этих недостатков лишены гели, сшитые NN/-диaллилтapтapдиaмидом. Например, гель с T = 5 и С = 15, сшитый ДАТД, оказывается настолько крупно пористым, что не тормозит миграцию биополимеров с молекулярной массой 0,5млн. дальтон; при этом он механически прочен, хорошо сцепляется со стеклом и прозрачен. Вспомним, что такой гель к тому же растворим в йодной кислоте.          

             Недавно описано успешное использование для электрофореза белков еще сильнее сшитого геля этого типа. В нем величина С достигала 27,т.е. отношение акриламид/ДАТД не превышало 4 : 1.                Рассмотрим теперь подробнее влияние выбора значений Т и С для обыч-ного ПААГ на скорость миграции в нем биополимеров. Тормозящий эффект тре-ния о гель проявляется в снижении электрофоретической подвижности заряженных макромолекул вгеле (и') по сравнению с их подвижностью в свободной жидкости с такими же, как у буфера геля, значениями рН и ионной силы раствора (u0).              Электрофоретическую подвижность определяют как величину скорости миграции заряженных молекул(см/ч)при напряженности поля 1 В/см. Величина и0 зависит от соотношения суммарного электрического заряда макромолекулы(при данном рН) и ее массы. Сила, действующая на молекулу в электрическом поле, пропорциональна заряду, а противодействующая миграции вдоль силовых линий поля сила трения о жидкость пропорциональна линейному размеру молекулы, а следовательно, кубическому корню из ее массы. Для ориентировки заметим, что электрофоретическая подвижность большинства кислых белков в свободной жид-кости при рН 8,8 лежит в пределах 0,1 — 0,5 см/ч на 1 В/см. Прямой корреляции между массой молекулы и величиной и0, очевидно, быть не должно. В геле трение существенно возрастает, причем тем сильнее, чем больше масса молекул и меньше средний размер пор, т. е. чем больше величина Т (для малых значений С).    

                    Показано, что имеет место соотношение: ln(и'/и0) = — kRT. Величина коэффициента торможения kR (порядка 0,1— 0,4) зависит от среднего радиуса молекулы R и степени сшивки геля С, слабо увеличиваясь с ростом последней в пределах от 1 до 7. Для глобулярных белков R лежит в диапазоне от 1,57 нм для лактальбумина(M = 12400) до 3,61 нм для церулоплазмина (M = 151 000). Для эффективного разделения белков при электрофорезе в ПААГ соотношение u'/u0 должно составлять 0,1 — 0,2. Отсюда следует, что оптимальная электрофорети-ческая подвижность белков в ПААГ лежит в пределах 0,01— 0,1 см/ч на 1 В/см. При напряженности поля 10  —  20 В/см этому соответствуют скорости миграции белков в диапазоне 0,1 — 2 см/ч. Таким образом, прирабочей длине геля 10см за 5ч электрофореза наиболее быстрые белки могут достигнуть конца геля, в то время как наименее подвижные продвинутся лишь на 0,5 см. Цифры эти — сугубо приближенные и приведены здесь лишь для общей ориентировки. В конкретных случаях возможны существенные отклонения от них. Например, если заранее известно, что разделяемые белки сильно различаются между собой по заряду или размерам, то можно вести электрофорез в условиях более высоких подвижностей (и'), т. е. в более крупно пористых гелях, и тем сократить время фракционирования в 2 — 3 раза. Выбор значения Т зависит от природы различия электрофоретических подвижностей белков в геле. Если сильно различаются размеры молекул, а отноше-ние заряда к массе у них более или менее одинаково, то имеет смысл выбрать Т максимальным. Разделение в этом случае будет происходить только за счет трения о гель, причем тем эффективнее, чем больше Т, хотя при этом в связи с увеличени-ем продолжительности электрофореза усилится диффузия белков. Если же компо-ненты анализируемой смеси имеют различные отношения заряда к массе, то может оказаться выгодным вести разделение в крупнопористом геле при малых значениях Т), т.е. как бы в свободной жидкости, почти не используя эффект трения молекул о гель. По крайней мере, это обеспечит выигрыш во времени фракционирования.

 

2.5. Миграция белков в геле.

            Отличие и' от uо является сила трения о гель, которая зависит от соотно-шения линейных размеров макромолекул и пор геля, а следовательно, от молеку-лярных масс белков и концентрации ПААГ. Молекулярные массы подавляющего большинства индивидуальных белков не превышают 500 000. Поэтому исполь-зование гелей агарозы оказывается нецелесообразным, кроме тех случаев, когда разделение белков хотят вести только по величине отношения заряда к массе. Как правило, электрофорез белков проводят в ПААГ, содержащем 5 — 20% акриламида.                Белки являются, цвиттерионами. Их суммарным зарядом, а следовательно и отношением заряда к массе, можно управлять путем изменения рН буфера, в котором полимеризуют ПААГ и ведут электрофорез и который далее будем именовать рабочим.                  Очевидно, что оптимальное значение рН рабочего буфера обусловливает не максимальный заряд, а максимальное различие зарядов разных белков, состав-ляющих исходную смесь. Поэтому в большинстве случаев нецелесообразно ис-пользовать экстремальные величины рН рабочего буфера, слишком удаленны не от изоэлектрических точек всех белков смеси. Для обычных кислых белков оптималь-ные значения рН буфера оказываются в нейтральной или слабощелочной области; миграция белков идет в направлении от катода к аноду. Для щелочных белков (гистонов, белков рибосом и др.) целесообразно использовать слабокислые буферы (рН 4 — 5). Эти белки различаются по величине суммарного положительного заряда и мигрируют в направлении от анода к катоду.              Отметим, что эффект трения о гель зависит не только от молекулярной массы, но и от конфигурации и жесткости белковой макромолекулы. Глобулярные белки, неспособные к агрегации или диссоциации на субъединицы, ведут себя более или менее одинаково, хотя их размеры зависят от плотности упаковки глобу-лы. Рыхлые глобулярные и, особенно, фибриллярные белки могут деформировать-ся при взаимодействии с гелем и тем самым облегчать себе миграцию между его нитями. Этот эффект особенно сильно выражен у высокомолекулярных нуклеино-вых кислот.               Для однозначного определения молекулярной массы белка по скорости его миграции при электрофорезе бывает целесообразно распрямить полипептидную цепочку белка и придать ей жесткость. Именно такой прием используется при электрофорезе белков, обработанных додецилсульфатом натрия.

  1. Красители используемые для проявления белков. Для наблюдения за ходом электрофореза в исходный препарат вносят краситель, мигрирующий в том же направлении, что и фракционируемые белки. Он не должен заметным образом связываться с белками, а скорость его продвиже-ния по гелю должна быть заведомо больше, чему наиболее быстро мигрирующего белка. Вместе с тем краситель не должен слишком сильно отрываться от белков, чтобы его прохождению до конца пластины или трубки соответствовало исполь-зование большей частинаходящегося в них геля для фракционирования белков. В щелочных и нейтральных буферах, когда кислые белки заряжены отрицательно и мигрируют к аноду, а также для любых белков в комплексе с ДДС-Na используют отрицательно заряженные красители. Наибольшее распространение получил Бромфеноловый синий, имеющий достаточно сложную структуру; в его состав, в частности, входят два дибромфенольных остатка. Иногда используют еще более сложно построенный краситель — ксиленцианол, электрофоретическая подвижность которого примерно вдвое ниже, чем бромфенолового синего, поэтому его используют при фракционировании крупных белков и нуклеиновых кислот.             Для характеристики электрофоретической подвижности белка в данных условиях электрофореза принято указывать отношение расстояния, пройденного белковой полосой от начала рабочего геля, к аналогичному расстоянию до полосы красителя в этом же геле. Это отношение, как и в хроматографии, обозначают Rf В качестве положительно заряженного красителя для электрофореза в кислой среде, когда белки мигрируют в направлении катода, используют метиловый зеленый или пиронин.

Заключение 

             В ходе работы был изучен метод электрофореза белков. Использование метода электрофореза в полиакриламидном геле для анализа и разделения сложных смесей белков и нуклеиновых кислот значительно расширило наши знания о белках. Электрофорез в полиакриламидном геле имеет ряд преимуществ перед другими аналитическими методами: он отличается простотой в исполнении, хорошей воспроизводимостью результатов и не требует сложного оборудования.  

           Все цели и задачи которые были поставлены – изучены.             

 

 

 

 

Список использованных источников.

1.http://ru.wikipedia.org

2. http://www.molbiol.ru

3. http://molbiol.ru

4. http://www.ippras.ru

5. Электрофорез и ультрацентрифугирование (практическое пособие). Методы исследования белков и нуклеиновых кислот (Остерман)

6. Ларский Электрофорез Г., Методы зонального электрофореза, М., 1971

7. Духин С. С., Дерягин Б. В., Электрофорез, М., 1976.

  1. Остерман Л. А. Методы исследования белков и нуклеиновых кислот: Электрофорез и ультрацентрифугирование (практическое пособие). М.: Наука, 1981. 288 с.
  2.   9. Остерман Л. А. Методы исследования белков и нуклеиновых кислот. М., МЦНМО, 2002, 248 с. 
  3. 10. Д. Кларк, Л. Рассел Молекулярная биология: простой и занимательный подход. Глава 16 (Методы молекулярной биологии)

 Скачать: 2.rar

 

Категория: Курсовые / Курсовые по химии

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.