Цветные металлы

ЦВЕТНЫЕ МЕТАЛЛЫ

В технике наибольшее самостоятельное значение имеют следующие цветные металлы: медь, никель, алюминий, цинк, свинец и олово.

МЕДЬ

В чистом виде медь имеет розовато-красный цвет, почему и называется красной медью.

Чем чище медь, тем розовее ее цвет и мельче сыпь в изломе; чем больше в ней примесей, тем грубее и темнее излом.

Удельный вес чистой меди равен 8,93, температура плавления 1083°, коэфициент линейного расширения при нагреве от 0 до 100° С—16,80*10-6, предел прочности при растяжении 22 кг/мм2 и удлинение 35—50%. Чистая медь обладает высокой электро- и теплопроводностью, очень пластична и хорошо поддается обработке давлением как в холодном, так и в нагретом состоянии. Так как расплавленная медь легко растворяет газы, то литейные качества чистой меди невысоки.

Категория: Рефераты / Производство

 

Космология

Радиотелескопы и оптические телескопы дают нам возможность вести наблюдения лишь весьма ограниченной части Вселенной, поэтому все наши познания в области физики и астрономии распространяются на относительно небольшой объем Вселенной. Отсюда возникает необходимость экстраполировать наши знания к гораздо более крупным временным и пространственным масштабам. При построении гипотезы поведения Вселенной космолог в качестве отправного пункта принимает какой-либо общий физический принцип — так называемый космологический принцип. Следует иметь в виду, что любой такой принцип является чисто предположительным и требует экспериментальной и наблюдательной проверки, как и всякий закон физики. В настоящее время космолог может лишь выбрать такой общий принцип в качестве исходного, принять некоторые границы применимости общей теории относительности, разработать математические следствия из модели Вселенной и проверить, подтверждаются ли экспериментально и наблюдениями предсказанные явления. В основу большинства космологических систем положен принцип, согласно которому в среднем в данное космологическое время любая точка в пространстве ничем не отличается от других точек космического пространства.

Категория: Рефераты / Астрономия

 

Твердые сплавы

ТВЕРДЫЕ СПЛАВЫ

В настоящее время наиболее совершенным материалом для режущего инструмента являются твердые или режущие сплавы. Эти сплавы позволяют применять большие скорости резания, чем быстрорежущая сталь, так как обладают большей твердостью и красностойкостью.

По способу изготовления режущие сплавы разделяют на литые и металлокерамические или спекаемые.

ЛИТЫЕ СПЛАВЫ

В состав литых режущих сплавов входят углерод, хром, никель, марганец, кремний, кобальт, вольфрам и железо; в структурном отношении литые сплавы характеризуются большим количеством карбидов, обладающих высокой твердостью; твердость литых сплавов достигает 60 Rc.

Категория: Рефераты / Производство

 

Специальные стали

Специальными (или легированными) называются стали, особые свойства которых получаются за счет введения в их состав специальных добавок (легирующих элементов). В качестве таких добавок к простой углеродистой стали употребляют никель, хром, вольфрам, молибден, медь, ванадий, титан, кобальт, алюминий, цирконий и др.; к специальным также относят те стали, в которых содержание Мn или Si превосходит обычное для простых углеродистых сталей.

КЛАССИФИКАЦИЯ СПЕЦИАЛЬНЫХ СТАЛЕЙ

Классификация по роду примесей и назначению. В зависимости от рода специальной примеси сталь называется марганцевой, никелевой, хромоникелевой и т. п., а в соответствии с назначением — машиноподелочной (конструкционной), инструментальной и прецизионной; последнее название присваивается сталям, предназначенным для работы в особых условиях, например, для изготовления физических приборов, деталей холодильных машин, для работы при высоких температурах, при резких переменах температур и т. д.

Категория: Рефераты / Производство

 

Чугуны

В структуре сплавов, содержащих углерода больше 2% (чугуны), часто можно встретить, кроме зерен феррита и цементита, также и графитовые зерна.

Причиной образования графитовых зерен в сплавах, называемых чугунами, является, однако, не количество содержащегося в чугунах углерода, превосходящее предельное его содержание в твердом растворе с железом, а неустойчивость химического соединения Fe3C.

При 900—1200° цементит в значительном количестве разлагается на железо и углерод. Таким образом, можно считать систему Fe—С более устойчивой, чем систему Fe—Fe3C. Неустойчивость при высоких температурах системы Fe—Fe3C является и причиной трактовки диаграммы состояния сплавов железа с углеродом как диаграммы системы Fe—С, а не Fe—Fe3C. На диаграмме состояния сплавов железа с углеродом эта большая устойчивость системы железо — графит по сравнению с системой железо — цементит выражается наличием линий, лежащих несколько выше тех, которые характеризуют явления образования или исчезновения цементита.

Категория: Рефераты / Производство

 

Классификация углеродистой стали

По назначению углеродистую сталь разделяют на строительную (конструкционную или машиноподелочную) и инструментальную.

Для изготовления деталей строительных конструкций требуется сталь, обладающая хорошей свариваемостью, вязкостью и достаточной прочностью.

Этим требованиям отвечают малоуглеродистые стали (0,1—0,25% С), используемые без термической обработки (котельная, мостовая и тому подобная сталь).

В машиностроении малоуглеродистая сталь широко используется как цементуемая для изготовления деталей, требующих высокой поверхностной твердости при хорошей вязкости (например, поршневые пальцы в двигателях внутреннего сгорания). Эту сталь широко используют также для изделий, получаемых холодной штамповкой. Более широко используют в машиностроении среднеуглеродистые стали (0,3—0,5% С). Обычно эти стали подвергают термической обработке, заключающейся в закалке и последующем высоком отпуске (при температуре около 600°). После подобной термической обработки, называемой улучшением, сталь приобретает повышенную прочность и пластичность, что и требуется для большинства деталей машин, испытывающих большие динамические нагрузки (крепежные изделия, валы, зубчатые колеса и т. п.).

Категория: Рефераты / Производство

 

Химико-термическая обработка стали

Поверхностная цементация стальных изделий, Поверхностной цементацией называется процесс обогащения поверхности изделия углеродом. Изделия цементуют с целью придания их поверхности большей по сравнению с внутренними слоями твердости.

Цементации подвергают изделия, предназначенные для работы при переменных ударных нагрузках и подвергающиеся истиранию. Имея твердую поверхность при сравнительно мягком и вязком материале внутренних слоев, такие изделия мало истираются и в то же время неломки. Так, например, зубья автомобильных зубчатых колес, изготовленные из мягкого материала, быстро утратили бы необходимую точность очертаний, а изготовленные из закаленной стали могли бы при толчках ломаться; будучи же изготовленными из материала с цементованной поверхностью, они вполне удовлетворяют предъявляемым к ним в работе требованиям.

Толщина цементованного слоя обычно колеблется в пределах от 0,1 до 2,0 мм; большая и меньшая глубина цементации может иметь место лишь в специальных случаях.

Подвергаемые цементации изделия должны быть изготовлены из малоуглеродистого материала (не выше 0,23% С). При большем содержании углерода в исходном материале нельзя будет после закалки цементованного изделия получить мягкой сердцевины.

Категория: Рефераты / Производство

 

Термическая обработка стали

Термическая обработка стали заключается в использовании внутренних превращений в стали путем нагрева и охлаждения, обрабатываемого материала. Регулируя степень и скорость нагрева и охлаждения, а также время выдержки при определенных температурах, можно при одном и том же химическом составе получить сталь с различной структурой и, следовательно, с различными механическими качествами.

Основоположником теории процессов термической обработки металлов является Д. К. Чернов, обнаруживший критические точки стали и описавший процессы ее кристаллизации; продолжателями работ Д. К. Чернова являются С. С. Штейнберг, Г. В. Курдюмов, Н. Т. Гудцов, А. А. Бочвар и др.

К основным видам термической обработки стали относятся отжиг, закалка и отпуск.

Отжигом называется операция, заключающаяся в нагреве стали до температур, лежащих выше критической, и в последующем медленном охлаждении, при котором в стали получаются устойчивые (стабильные) структуры. Целью отжига является изменение механических, технологических, а иногда а физических свойств стали путем изменения ее структуры.

Категория: Рефераты / Производство

 

Переходные структуры стали

Ввиду того что структурные превращения, происходящие при охлаждении стали, совершаются не мгновенно, то быстрым охлаждением они могут быть частично или полностью задержаны, так как при низких температурах подвижность атомов уменьшается. Увеличение скорости охлаждения приводит к возникновению переходных между аустенитом и перлитом структур; таких структур в зависимости от скорости охлаждения может быть много, наиболее-типичные из них получили названия мартенсита, троостита и сорбита.

Выше уже было сказано, что с увеличением скорости охлаждения критические точки стали понижаются. На фиг. 104 даны кривые охлаждения эвтектоидной стали для различных скоростей охлаждения. Замечательно, что при некоторой достаточно большой скорости охлаждения на кривой охлаждения появляется еще одна критическая точка при 240° — точка М. Дальнейшее увеличение скорости охлаждения приводит к тому, что на кривой охлаждения остается только одна критическая точка — точка М.

 

Переходные структуры стали

 

Категория: Рефераты / Производство

 

Изотермическое превращение аустенита

Большое значение для понимания сущности описываемых ниже процессов термической обработки стали имеют проведенные в последнее время исследования поведения переохлажденного аустенита при различных температурах ниже Аr1. Успехами в этой области мы обязаны прежде всего работам выдающегося советского металловеда С. С. Штейнберга и его учеников.

Эти работы показали, что аустенит стали, быстро перенесенной от высоких температур в те или иные изотермические среды — расплавленные металлы или соли с температурой ниже Аr1, ведет себя различно в зависимости от температуры изотермической среды. Обнаружилось, что превращение аустенита начинается не сразу, а только через некоторый промежуток времени — «инкубационный период», причем величина этого инкубационного периода, а также скорость превращения аустенита сильно изменяются с изменением температуры среды. Для углеродистой стали быстрее всего начинается и идет превращение при температуре среды 550°, а при более низких температурах превращение сильно замедляется, и при температуре около 350 — 400° аустенит в стали сохраняется в течение нескольких минут. С понижением температуры изотермической среды изменяются и продукты превращения аустенита. Чем ниже эта температура, тем продукты распада тоньше, возникающие структуры подобны рассмотренным выше структурам — сорбиту и трооститу.

Категория: Рефераты / Производство