Оперение

0

Несущие поверхности, предназначенные для обеспечения устойчивости, управляемости и балансировки самолета, называют оперением.

Обеспечение продольной балансировки, устойчивости и управляемости самолета обычной схемы осуществляется горизонтальным оперением; путевая балансировка, устойчивость и управляемость — вертикальным; балансировка и управление самолета относительно продольной оси производятся при помощи элеронов или рулей крена, представляющих собой некоторую долю хвостовой части крыла. Оперение обычно состоит из неподвижных поверхностей, которые служат для обеспечения равновесия (балансировки) и устойчивости, и подвижных поверхностей, при отклонении которых создаются аэродинамические моменты, обеспечивающие равновесие (балансировку) и управление полетом. Неподвижная часть горизонтального оперения называется стабилизатором, а вертикального — килем.

К стабилизатору шарнирно крепится руль высоты, состоящий обычно из двух половин, а к килю — руль направления (рис. 57).

На рис. 57 показан принцип действия оперения при отклонении руля. Оперение (в рассматриваемом случае горизонтальное) обтекается воздушным потоком под некоторым углом атаки αг.о, не равным нулю.

 

 

 

Поэтому на оперении возникает аэродинамическая сила Rг.о, которая благодаря большому плечу относительно центра тяжести самолета создает момент, уравновешивающий суммарный момент от крыла, тяги двигателей, фюзеляжа. Таким образом, момент оперения балансирует самолет. Отклонением руля в ту или другую сторону можно изменить не только величину, но и направление момента и таким образом вызвать поворот самолета относительно поперечной оси, т. е. управлять самолетом. Момент относительно оси вращения руля, возникающий от действия на него аэродинамической силы Rp, обычно называют шарнирным моментом и обозначают Mш = Rpa.

Величина шарнирного момента зависит от скорости полета (числа М), углов атаки и скольжения, угла отклонения руля, местоположения шарниров подвески и размеров руля. Отклоняя рычаги управления, пилот должен приложить определенное усилие для преодоления шарнирного момента.

Сохранение приемлемых для пилота усилий, потребных для отклонения руля, достигается применением аэродинамической компенсации, которая будет рассмотрена ниже.

Эффективность рулей можно оценить по изменению величин продольного момента, моментов крена и рыскания при отклонении на один градус соответствующего руля. При малых скоростях полета эффективность рулей мало зависит от скорости полета (числа М). Однако при больших скоростях полета сжимаемость воздуха, а также упругие деформации конструкции заметно снижают эффективность рулей. Уменьшение эффективности руля при больших околозвуковых скоростях обусловливается главным образом упругой закруткой стабилизатора, киля, крыла, которая снижает общий прирост подъемной силы профиля от отклонения руля (см. рис. 57).

Степень упругой закрутки профиля при отклонении руля зависит от величины действующего на профиль аэродинамического момента (относительно центра жесткости профиля), а также от жесткости самой конструкции.

Малая относительная толщина оперения скоростных самолетов, а значит, малая жесткость может вызвать явления реверса управления.

Уменьшение эффективности рулей при их обтекании сверхзвуковыми скоростями вызвано другими причинами. При сверхзвуковом обтекании добавочная подъемная сила при отклонении руля возникает только на руле, неподвижная часть оперения (киль, стабилизатор) участия в создании дополнительной аэродинамической силы не принимает. Поэтому для получения достаточной степени управляемости необходимо большее отклонение руля или увеличение площади отклоняемой поверхности. С этой целью на сверхзвуковых самолетах устанавливается подвижной управляемый стабилизатор, который не имеет руля высоты. То же самое относится к вертикальному оперению. На сверхзвуковых самолетах возможно применение поворотного киля без руля поворота.

 


Изменение направления полета достигается путем поворота стабилизатора и киля. Углы отклонения стабилизатора и киля значительно меньше углов отклонения соответствующих рулей. Отклонение безрулевых поверхностей осуществляется с помощью необратимых самотормозящих гидравлических или электрических силовых устройств. Безрулевое оперение обеспечивает эффективное управление и балансировку самолета в большом диапазоне скоростей, от малых дозвуковых до больших сверхзвуковых, а также в большом диапазоне центровок.

Элероны (рули крена) располагаются на концевой части крыла (рис. 58). Принцип действия элеронов заключается в перераспределении аэродинамической нагрузки по размаху крыла. Если, например, левый элерон отклоняется вниз, а правый вверх, то подъемная сила левой половины крыла возрастет, а правой уменьшится. В результате появляется момент, накреняющий самолет. Обеспечить достаточную эффективность рулей крена у сверхзвуковых самолетов трудно. Малые толщины крыла и особенно его концевых участков приводят к тому, что при отклонении элеронов крыло закручивается в сторону, противоположную отклонению элеронов. Это резко снижает их эффективность. Увеличение жесткости концевых участков крыла приводит к увеличению веса конструкции, что нежелательно.

В последнее время появились самолеты с так называемыми внутренними элеронами (рис. 58, б). Если обычные (рис. 58, а) элероны устанавливаются вдоль концевой части крыла, то внутренние элероны располагаются ближе к фюзеляжу. При одинаковой площади элеронов за счет уменьшения плеча относительно продольной оси самолета эффективность внутренних элеронов при полете на малых скоростях снижается. Однако на большой скорости полета внутренние элероны оказываются более эффективными. Возможна одновременная установка внешних и внутренних элеронов. В этом случае при полете на малых скоростях используются внешние элероны, а на больших скоростях — внутренние. Внутренние элероны при взлете и посадке могут использоваться как закрылки.

Элероны, занимая сравнительно большую долю размаха крыла, создают трудности размещения механизации крыла по всему размаху, вследствие чего эффективность последней снижается. Стремление повысить эффективность средств механизации привело к созданию интерцепторов. Интерцептор представляет собой небольшую плоскую или слегка искривленную пластину, расположенную вдоль размаха крыла, которая в полете скрыта в крыле. При пользовании интерцептор выдвигается вверх из левой или правой половины крыла, приблизительно по нормали к поверхности крыла, и, вызывая срыв воздушного потока, приводит к изменению подъемной силы и крену самолета. Обычно интерцептор работает совместно с элероном и выдвигается на той части крыла, на которой элерон отклоняется вверх.

Таким образом, действие интерцептора суммируется с действием элерона. Применение интерцепторов позволяет уменьшить длину элерона и за счет этого увеличить размах закрылков, следовательно, повысить эффективность механизации крыла.

На некоторых самолетах интерцепторы используются как тормозные щитки и в этом случае одновременно отклоняются вверх на обеих частях крыла только после приземления самолета или в процессе прерванного взлета. На других самолетах интерцепторы для торможения выдвигаются на некоторую часть полного хода, а оставшаяся часть хода может быть использована для поперечной управляемости. Высота полностью выдвинутого интерцептора составляет 5—10% хорды крыла, а длина—10—35% полуразмаха. Для сохранения большей плавности обтекания крыла и уменьшения срывного сопротивления интерцепторы иногда делают не сплошными вдоль размаха, а гребенчатыми. Эффективность таких прерывателей несколько меньше, чем сплошных, но зато вследствие ослабления срывных явлений уменьшается сопутствующая им тряска крыла и хвостового оперения.

 

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

 

Скачать реферат: Operenie.rar

Пароль на архив: privetstudent.com

 

 

Категория: Рефераты / Авиация

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.