Самолеты вертикального взлета и посадки

0

Конструирование самолетов с вертикальным взлетом и посадкой сопряжено с большими трудностями, связанными с необходимостью создания легких двигателей, управляемостью на околонулевых скоростях и др.

В настоящее время известно много проектов схем самолетов вертикального взлета и посадки, многие из которых уже воплощены в реальные аппараты.

Самолеты с воздушными винтами

 

Одним из решений проблемы вертикального взлета и посадки является создание самолета, у которого подъемная сила при взлете и посадке создается поворотом оси вращения винтов, а в горизонтальном полете — крылом. Поворот оси вращения винтов может быть достигнут поворотом двигателя или крыла. Крыло такого самолета (рис. 160) выполняется по многолонжеронной схеме (минимум два лонжерона) и крепится к фюзеляжу на шарнирах. Механизм поворота крыла чаще всего представляет винтовой домкрат с синхронизированным вращением, обеспечивающий изменение угла установки крыла на угол больше 90°.

Крыло снабжается по всему размаху многощелевыми закрылками. На участках, где крыло не обдувается воздушным потоком от винта, или там, где скорости обдувания невелики (в центральной части крыла), устанавливаются предкрылки, способствующие устранению срыва потока при больших углах атаки. Вертикальное оперение отличается относительно большими размерами (для повышения путевой устойчивости при малых скоростях полета) и оснащается рулем направления. Стабилизатор такого самолета обычно управляемый. Углы установки стабилизатора могут изменяться в больших пределах, обеспечивая переход самолета от вертикального взлета к горизонтальному полету и обратно. Основание киля переходит в вынесенную назад хвостовую балку, на которой в горизонтальной плоскости крепится хвостовой винт небольшого диаметра, изменяемого шага, обеспечивающий продольное управление на режиме висения и переходных режимах полета.

Силовая установка состоит из нескольких мощных турбовинтовых двигателей, отличающихся небольшими размерами и малым удельным весом порядка 0,114 кГ/л. с., что очень важно для летательного аппарата вертикального взлета и посадки любой схемы, так как у таких аппаратов при вертикальном взлете тяга должна быть больше веса. Кроме преодоления веса, тяга должна преодолевать аэродинамическое сопротивление и создавать ускорение для разгона самолета до такой скорости, при которой подъемная сила крыла будет полностью компенсировать вес самолета, а рулевые аэродинамические поверхности будут достаточно эффективны.

Серьезный конструктивный недостаток самолетов вертикального взлета и посадки с воздушными винтами заключается в том, что обеспечение безопасности полета и надежной управляемости самолета при вертикальном взлете и на переходных режимах полета достигается ценой утяжеления и усложнения конструкции за счет применения механизма поворота крыла и трансмиссии, синхронизирующей вращение воздушных винтов.

Сложной является также система управления самолетом. Управление во время взлета и посадки и в крейсерском полете по трем осям осуществляется с помощью обычных аэродинамических поверхностей управления, но на режиме висения и. переходных режимах до и после крейсерского полета применяются иные методы управления.

Во время вертикального набора высоты продольное управление осуществляется с помощью горизонтального рулевого винта (с изменяемым шагом), расположенного за килем (рис. 160, б), путевое управление — дифференциальным отклонением концевых секций закрылков, обдуваемых струей от воздушных винтов, а поперечное управление — дифференциальным изменением шага крайних воздушных винтов.




 



На переходном режиме осуществляется постепенный переход к управлению с помощью обычных поверхностей; для этого используется смеситель команд, работа которого программируется в зависимости от угла поворота крыла. В систему управления включен механизм стабилизации.

Улучшение характеристик самолетов вертикального взлета и посадки с воздушными винтами в настоящее время возможен за счет того, что воздушный винт заключают в кольцевой канал (короткую трубу соответствующего диаметра). Такой винт развивает тягу на 15—20% больше, чем тяга винта без «ограждения». Объясняется это тем, что стенки канала препятствуют перетеканию сжатого воздуха с нижних поверхностей винта на верхние, где давление понижено, и исключают рассеивание потока от винта в стороны. Кроме того, при подсасывании воздуха винтом над кольцевым каналом создается область пониженного давления, а так как винт отбрасывает вниз поток сжатого воздуха, разность давлений на верхнем и нижнем срезе кольца канала приводит к образованию дополнительной подъемной силы. На рис. 161, а представлена схема самолета вертикального взлета и посадки с воздушными винтами, установленными в кольцевых каналах. Самолет выполнен по схеме тандем с четырьмя винтами, приводимыми в движение общей трансмиссией.

.Управление по трем осям в крейсерском и вертикальном полете (рис. 161, б, в, г) производится в основном путем дифференциального изменения шага воздушных винтов и отклонения закрылков, расположенных горизонтально в струях, отбрасываемых винтами за каналами.

Следует отметить, что самолеты вертикального взлета и посадки с воздушными винтами способны развивать скорость 600— 800 км/ч. Достижение более высоких дозвуковых, а тем более сверхзвуковых скоростей полета возможно лишь при использовании реактивных двигателей.

Самолеты с реактивной тягой

Известно много схем самолетов вертикального взлета и посадки с реактивной тягой, однако их можно достаточно строго разделить на три основные группы по типу силовой установки: самолеты с единой силовой установкой, с составной силовой установкой и с силовой установкой с агрегатами усиления тяги.

Самолеты с единой силовой установкой, у которой один и тот же двигатель создает вертикальную и горизонтальную тягу (рис. 162), теоретически могут летать со скоростями, превышающими скорость звука в несколько раз. Серьезным недостатком такого самолета является то, что отказ двигателя на взлете или при посадке грозит катастрофой.

 


Самолет с составной силовой установкой может совершать полет также со сверхзвуковыми скоростями. Его силовая установка состоит из двигателей, предназначенных для вертикального взлета и посадки (подъемные), и двигателей для горизонтального полета (маршевые), рис. 163.

Подъемные двигатели имеют вертикально расположенную ось, а маршевые — горизонтально расположенную. Отказ одного или двух подъемных двигателей на взлете позволяет продолжать вертикальный взлет и посадку. В качестве маршевых двигателей могут использоваться ТРД, ДТРД. Маршевые двигатели на взлете могут также участвовать в создании вертикальной тяги. Отклонение вектора тяги производится или поворотными соплами, или поворотом двигателя вместе с гондолой.

На самолетах ВВП с реактивными двигателями устойчивость и управляемость на режимах взлета, посадки, висения и переходных режимах, когда аэродинамические силы отсутствуют или малы по величине, обеспечивается управляющими устройствами газодинамического типа. По принципу работы они разделяются на три класса: с отбором сжатого воздуха или горячих газов от силовой установки, с использованием величины тяги движителей и с применением устройств отклонения вектора тяги.

 



Управляющие устройства с отбором сжатого воздуха или газов наиболее просты и надежны. Пример компоновки управляющего устройства с отбором сжатого воздуха от подъемных двигателей представлен на рис. 164.

Самолеты ВВП, оснащенные силовой установкой с агрегатами усиления тяги, могут иметь турбовентиляторные агрегаты (рис. 165) или газовые эжекторы (рис. 166), которые и создают необходимую вертикальную тягу на взлете. Силовые установки этих самолетов могут быть созданы на базе ТРД и ДТРД.

Силовая установка самолета с агрегатами усиления тяги, представленная на рис. 165, состоит из двух ТРД, установленных в фюзеляже и создающих горизонтальную тягу. При вертикальном взлете и посадке ТРД используются в качестве газогенераторов для привода во вращение двух турбин с вентиляторами, размещенных в крыле, и одной турбины с вентилятором в носовой части фюзеляжа. Передний вентилятор используется только для продольного управления.

Управление самолетом на вертикальных режимах обеспечивается вентиляторами, а в горизонтальном полете — аэродинамическими рулями. Самолет с эжекторной силовой установкой, представленный на рис. 166, имеет силовую установку из двух ТРД. Для создания вертикальной тяги поток газов направляется в эжекторное устройство, расположенное в центральной части фюзеляжа. Устройство имеет два центральных воздушных канала, из которых воздух направляется в поперечные каналы с щелевыми соплами на концах.

 

Самолеты вертикального взлета и посадки

 


 

 


 Каждый ТРД соединен с одним центральным каналом и половиной поперечных каналов с соплами, чтобы при выключении или выходе из строя одного ТРД эжекторное устройство продолжало работать. Сопла выходят в эжекторные камеры, которые закрываются створками на верхней и нижней поверхностях фюзеляжа. При работе эжекторной установки вытекающие из сопла газы эжектируют воздух, объем которого в 5,5—6 раз больше объема газов, что на 30% превышает тягу ТРД.

Вытекающие из эжекторных камер газы имеют небольшую скорость и температуру. Это позволяет эксплуатировать самолет с взлетно-посадочных площадок без специального покрытия, кроме того, эжекторное устройство понижает уровень шума ТРД. Управление самолетом на крейсерском режиме осуществляется обычными аэродинамическими поверхностями, а на режиме взлета, посадки и переходных режимах — системой струйных рулей, обеспечивающих устойчивость и управляемость самолету.

Силовые установки с усилением вектора тяги обладают несколькими очень серьезными недостатками. Так, силовая установка с турбовентиляторным агрегатом требует больших объемов для размещения вентиляторов, что затрудняет создание крыла с тонким профилем, нормально работающего в сверхзвуковом потоке. Еще больших объемов требует эжекторная силовая установка.

 


Самолеты вертикального взлета и посадки

 


Обычно при таких схемах возникают трудности с размещением топлива, что ограничивает дальность полета самолета.

При рассмотрении схем самолетов ВВП может сложиться ошибочное мнение о том, что возможность вертикального взлета должна окупаться уменьшением поднимаемого самолетом полезного груза. Даже приближенные расчеты подтверждают вывод о том, что вертикально взлетающий самолет, обладающий большой скоростью полета, может быть создан без значительных потерь в полезной нагрузке или дальности, если с самого начала проектирования самолета в основу его положить требования вертикального взлета и посадки.

На рис. 167 представлены результаты анализа весов самолетов обычной схемы (нормального взлета) и ВВП. Сравниваются самолеты равного взлетного веса, имеющие одинаковую скорость крейсерского полета, высоту, дальность и поднимающие одинаковую полезную нагрузку. Из диаграммы рис. 167 видно, но самолет ВВП (с 12 подъемными двигателями) имеет силовую установку тяжелее обычного самолета примерно на 6% взлетного веса самолета нормального взлета.



 


 

 


Кроме того, гондолы подъемных двигателей еще на 3% от взлетного веса увеличивают вес конструкции самолета ВВП. Расход топлива на взлет и посадку, включая движение по земле, больше, чем у обычного самолета, на 1,5%, а вес дополнительного оборудования самолета ВВП на 1%.

Этот неизбежный для вертикально взлетающего самолета дополнительный вес, равный примерно 11,5% взлетного веса, может быть скомпенсирован уменьшением веса других элементов его конструкции.

Так, для самолета ВВП крыло выполняется меньшего размера по сравнению с самолетом обычной схемы. К тому же отпадает необходимость в применении механизации крыла, и это уменьшает вес примерно на 4,4%.

Дальнейшей экономии веса самолета ВВП можно ожидать от уменьшения веса шасси и хвостового оперения. Вес шасси самолета ВВП, рассчитанного на максимальную скорость снижения 3 м/сек, может быть уменьшен на 2% взлетного веса по сравнению с самолетом обычной схемы.

Таким образом, весовой баланс самолета ВВП показывает, что вес конструкции самолета ВВП больше веса обычного самолета приблизительно на 4,5% максимального взлетного веса самолета обычной схемы.

Однако обычный самолет должен иметь значительный резерв топлива для полетов в зоне ожидания и для поиска запасного аэродрома в плохую погоду. Этот резерв топлива для вертикально взлетающего самолета может быть значительно уменьшен, так как он не нуждается во взлетно-посадочной полосе и может приземляться практически па любой площадке, размеры которой могут быть незначительны.

Из вышесказанного следует, что самолет ВВП, имеющий взлетный вес такой же, как и у самолета обычной схемы, может нести ту же полезную нагрузку и совершать полет с той же скоростью и на ту же дальность.

 

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

Категория: Рефераты / Авиация

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.