Бактериальные удобрения

0

Введение

Присутствующая в почве микрофлора оказывает непосредственное влияние на ее плодородие, и как следствие, на повышение урожайности сельскохозяйственных культур. Почвенные микроорганизмы в процессе роста и развития улучшают структуру почв, накапливают в них питательные вещества, минерализуя различные органические и неорганические соединения, например, азота и фосфора, превращая их в итоге в легкоусвояемые растением продукты питания.

С целью стимулирования деятельности почвенной микрофлоры применяют различные бактериальные удобрения, которые обогащают ризосферу растений полезными микроорганизмами.

Растения синтезируют ряд соединений, регулирующих их рост и развитие (фитогормоны, биорегуляторы). К их числу принадлежат ауксины, гиббереллины, цитокинины. Созревание плодов стимулирует этилен. Эти биорегуляторы находят применение в сельском хозяйстве. К числу новых, обнаруженных в последние годы биорегуляторов относят пептиды, имеются перспективы их применения в сельском хозяйстве.

Биологические (бактериальные) удобрения применяют для обогащения почвы связанным азотом. Большое распространение получили препараты нитрагин и азотобактерин — клетки клубеньковых бактерий и азотобактера, к которым добавляют стабилизаторы (мелассу, тиомочевину) и наполнитель (бентонит, почву). Азотобактерин обогащает почву не только азотом, но и витаминами и фитогормонами, гиббереллинами и гетероауксинами. Препарат фосфобактерин из Bacillusmegaterium превращает сложные органические соединения фосфора в простые, легко усвояемые растениями. Фосфобактерин также обогащает почву витаминами и улучшает азотное питание растений.

1 Бактериальные удобрения

Бактериальные удобрения — это препараты, способствующие улучшению питания растений. Питательных веществ они не содержат. Препараты, в которых содержатся полезные для сельскохозяйственных растений почвенные микроорганизмы. При внесении этих удобрений в почве усиливаются биохимические процессы и улучшается корневое питание растений.

Самыми распространенными бактериальными удобрениями являются:

✓ нитрагин — препарат, содержащий клубеньковые бактерии, которые поставляют к растениям азот. Используется только для бобовых растений, причем для каждого вида культуры разный тип бактерий;

✓ азотобактерин — препарат, содержащий азотобактерии, которые также поставляют азот. Однако эти существа универсальны и могут применяться на разных культурах;

✓ фосфобактерин — препарат, содержащий фосфобактерии, соответственно, переносят к корням растений фосфор;

✓ ЭМ-препарат (эффективные микроорганизмы) — содержит несколько видов микроорганизмов, которые вместе комплексно воздействуют на растения.

Все бактериальные удобрения вносятся в почву в очень малых количествах (несколько капель на 1 л дождевой воды).

Вносить такие удобрения следует, соблюдая ряд правил:

✓ почва должна быть влажной;

✓ раствор не должен попадать на побеги растений;

✓ микроорганизмы не любят много света, поэтому препараты лучше вносить поздно вечером или в пасмурную погоду;

✓ ослабленные по различным причинам растения (от вредителей, болезней) либо посаженные недавно не стоит удобрять таким образом, потому что они слишком слабы.

Так как бактериальные удобрения содержат живых существ, то хранение их должно быть особым: от заморозки и слишком высокой температуры бактерии погибнут. Данный вид удобрений не выдерживают длительного хранения, поэтому готовят их в количестве, необходимом лишь для одного сезона. Хранят в заводской таре в сухом помещении при температуре от 0 до 10 °C; нельзя хранить на складе, где находятся летучие ядохимикаты.

1.1 Получение фосфобактерина

Фосфобактерин - бактериальное удобрение, содержащее споры микроорганизма Bacillus megaterium var. phosphaticum. Представляет собой порошок светло-серого или желтоватого цвета.

Бактерии обладают способностью превращать сложные фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды и т.д.) и трудноусвояемые минеральные фосфаты в доступную для растений форму. Кроме этого бактерии вырабатывают биологически активные вещества (тиамин, пиридоксин, биотин, пантотеновую и никотиновую кислоты и др.), стимулирующие рост растения. Фосфобактерин относится к числу препаратов со стимулирующим эффектом.

Bacillus megaterium var. phosphaticum представляют собой мелкие, грамположительные аэробные спорообразующие палочки размером 2*6 мкм. Клетки содержат значительное количество соединений фосфора. В ранней стадии развития это подвижные одиночные палочки, при старении образуют эндоспоры, локализующиеся в одном из концов клетки. В силу вышеизложенного технология выращивания сводится к получению спор.

В целом производство фосфобактерина похоже на производство азотобактерина и препаратов клубеньковых бактерий. Состав питательной среды в процентах: кукурузный экстракт -1.8, меласса - 1.5, сульфат аммония - 0.1, мел - 1, остальное - вода. Культивирование ведется глубинным методом в строго асептических условиях при постоянном перемешивании и принудительной аэрации до стадии образования спор. Основные параметры проведения процесса: температура 28-30оС, рН 6.5-7.5, длительность культивирования 1.5-2 суток.

Полученную в ходе культивирования биомассу клеток отделяют центрифугированием и высушивают в распылительной сушилке при температуре 65-75оС до остаточной влажности 2-3%. Высушенные споры смешивают с наполнителем. Готовый препарат должен содержать не менее 8 млрд. клеток в 1 г. Расфасовывают препарат в полиэтиленовые пакеты по 50-500 г. В отличие от нитрагина и азотобактерина фосфобактерин обладает большей устойчивостью при хранении.

Фосфобактерин рекомендуют применять на черноземных почвах, которые содержат наиболее значительное количество фосфороорганических соединений. Необходим для повышения урожайности зерновых, картофеля, сахарной свеклы и др. сельскохозяйственных растений. Семена обрабатывают смесью сухого фосфобактерина с наполнителем (золой, почвой и др.) в соотношении 1:40. На 1 гектарную порцию требуется 5 г препарата и 200 г наполнителя. Клубни картофеля равномерно увлажняют суспензией спор, приготовленной из расчета 15 г препарата на 15 л воды. Урожай при этом повышается на 10%.перспективы их применения в сельском хозяйстве.

1.2 Получение азотобактерина

Азотобактерин - бактериальное удобрение, содержащее свободноживущий почвенный микроорганизм Azotobacter chroococcum, способный фиксировать до 20 мг атмосферного азота на 1 г использованного сахара. Внесенные в качестве удобрения в почву бактерии также выделяют биологически активные вещества (никотиновую и пантотеновую кислоты, пиридоксин, биотин, гетероауксин, гиббереллин и др.). Эти вещества стимулируют рост растений. Кроме того, продуцируемые Azotobacter фунгицидные вещества из группы анисомицина угнетают развитие некоторых нежелательных микроскопических грибов в ризосфере растения.

Все виды Azotobacter строгие аэробы. Чувствительны к содержанию в среде фосфора и развиваются лишь при высоком его содержании в питательной среде. Азотфиксирующая способность культуры подавляется аммиаком (вообще содержание в среде связанного азота угнетает азотфиксацию). Стимулируют процесс фиксации азота соединения молибдена.

Установлено, что при фиксации азота процесс его восстановления протекает на одном и том же синтезируемом азотобактером ферментном комплексе и лишь конечный продукт (аммиак) отделяется от фермента. Нитрогеназная азотфиксирующая система представляет собой мультиферментный комплекс, содержащий не связанное с геном железо, молибден и SH-группы.

Микробиологическая промышленность выпускает несколько видов азотобактерина: сухой, почвенный и торфяной. Технология получения сухого азотобактерина имеет много общего с технологией производства сухого нитрагина. Сухой азотобактерин - активная культура высушенных клеток азотобактера с наполнителем. В 1 г препарата содержится не менее 0.5 млрд. жизнеспособных клеток. Культуру микроорганизма выращивают методом глубинного культивирования на среде, содержащей те же компоненты, что и при культивировании клеток Rhizobium. Дополнительно вводят только сульфаты железа и марганца, а также сложную соль молибденовой кислоты, рН 5.7-6.5.

Процесс ферментации проводят до стационарной фазы развития культуры, так как в этой фазе биологически активные вещества выделяются из клетки и остаются в культуральной жидкости. Биологически активные вещества могут также полностью или частично теряться при высушивании, однако жизнеспособные клетки быстро восстанавливают способность их продуцировать. Высушенную культуру стандартизируют, фасуют в полиэтиленовые пакеты по 0.4-2 кг и хранят при температуре 15оС не более 3 месяцев.

Почвенный и торфяной азотобактерин представляют собой активную культуру азотобактера, размноженную на твердой питательной среде, и содержат в 1 г не менее 50 млн. жизнеспособных клеток. Для их приготовления берут плодородную почву или разлагающийся торф с нейтральной реакцией среды. К просеянному субстрату добавляют 2% извести и 0.1% суперфосфата. По 500 г полученной смеси переносят в бутыли емкостью по 0.5 л, увлажняют на 40-60% по объему водой, закрывают ватными пробками и стерилизуют. Посевной материал готовят на агаровых средах, содержащих 2% сахарозы и минеральные соли. Когда агар полностью покрывается слизистой массой коричневого цвета, полученный материал стерильно смывается дистиллированной водой и переносится на приготовленный субстрат. Содержимое бутылок тщательно перемешивают и термостатируют при 25-27оС. Культивирование продолжают до тех пор, пока бактерии не размножатся до необходимого количества. Полученный препарат сохраняет свою активность в течение 2-3 месяцев.

Использовать азотобактерин рекомендуется только на почвах, содержащих фосфор и микроэлементы. Азотобактерин применяют для бактеризации семян, рассады, компостов. При этом урожайность увеличивается на 10-15%. Семена зерновых опудривают сухим азотобактерином из расчета 100 млрд. клеток на 1 гектарную порцию семян. Картофель и корневую систему рассады равномерно смачивают водной суспензией бактерий. Для получения суспензии 1 гектарную норму (300 млрд. клеток) разводят в 15 литрах воды. При обработке почвенным или торфяным азотобактерином семена перемешивают с увлажненным препаратом и для равномерного высева подсушивают. Корневую систему рассады смачивают приготовленной суспензией.

1.3 Производство бактериальных удобрений на основе клубеньковых бактерий

Микрофлора почвы оказывает непосредственное влияние на её плодородие и, как следствие, на урожайность растений. Почвенные микроорганизмы в процессе роста и развития улучшают структуру почвы, накапливают в ней питательные вещества, минерализуют различные органические соединения, превращая их в легко усвояемые растением компоненты питания. Для стимуляции этих процессов применяют различные бактериальные удобрения, обогащающие ризосферу растений полезными микроорганизмами. Микроорганизмы, используемые для производства бактериальных препаратов, способствуют снабжению растений не только элементами минерального питания, но и физиологически активными веществами (фитогормонами, витаминами и др.).

В настоящее время выпускают такие бактериальные удобрения, как нитрагин, ризоторфин, азотобактерин, фосфобактерин, экстрасол. Отечественная промышленность выпускает два вида препаратов клубеньковых бактерий: нитрагин и ризоторфин. Оба препарата производятся на основе активных жизнеспособных клубеньковых бактерий из рода Rhizobium. Эти бактерии в симбиозе с бобовыми культурами способны фиксировать свободный азот атмосферы, превращая его в соединения, легкоусвояемые растением.

Бактерии рода Rhizobium - строгие аэробы. Среди них различают активные, малоактивные и неактивные культуры. Критерием активности клубеньковых бактерий служит их способность в симбиозе с бобовым растением фиксировать атмосферный азот и использовать его в виде соединений для корневого питания растений.

Фиксация атмосферного азота возможна только в клубеньках, образующихся на корнях растений. Возникают они при инфицировании корневой системы бактериями из рода Rhizobium. Заражение корневой системы происходит через молодые корневые волоски. После внедрения бактерии прорастают внутри них до самого основания в виде инфекционной нити. Выросшие нити проникают сквозь стенки эпидермиса в кору корня, разветвляются и распределяются по клетками коры. При этом индуцируется деление клеток хозяина и разрастание тканей. В месте локализации бактерий на корне растения-хозяина образуются клубеньки, в которых бактерии быстро размножаются и располагаются по отдельности или группами в цитоплазме растительных клеток. Сами бактериальные клетки увеличиваются в несколько раз и меняют окраску. Если клубеньки имеют красноватую или розовую окраску, обусловленную наличием пигмента леггемоглобина - аналог гемоглобина крови животных, то они способны фиксировать молекулярный азот. Неокрашенные ("пустые") или имеющие зеленоватую окраску клубеньки не фиксируют азот.

Бактерии, находящиеся в клубеньках, синтезируют ферментную систему с нитрогеназной активностью, восстанавливающую молекулярный азот до аммиака. Ассимиляция аммиака происходит, в основном, путем вовлечения его в ряд ферментативных превращений, приводящих к образованию глутамина и глутаминовой кислоты, идущих в дальнейшем на биосинтез белка.

Помимо критерия активности в характеристике клубеньковых бактерий используют критерий вирулентности. Он характеризует способность микроорганизма вступать в симбиоз с бобовым растением, то есть проникать через корневые волоски внутрь корня и вызывать образование клубеньков. Большое значение имеет скорость такого проникновения. В симбиотическом комплексе растение - Rhizobium бактерии обеспечиваются питательными веществами, а сами снабжают растение азотистым питанием. С вирулентностью связана и видовая избирательность, которая характеризует способность данного вида бактерий к симбиозу с определенным видом бобового растения. Классификация различных видов Rhizobium учитывает растение-хозяина, например: Rhizobium phaseoli - для фасоли, Rhizobium lupini - для люпина, сараделлы и т.д. Вирулентность и видоспецифичность взаимосвязаны и не являются постоянными свойствами штамма.

Задачей производства бактериальных удобрения является максимальное накопление жизнеспособных клеток, сохранение их жизнеспособности на всех стадиях технологического процесса, приготовление на их основе готовых форм препарата с сохранением активности в течение гарантийного срока хранения.

1.3.1 Нитрагин

Отечественная промышленность выпускает два вида нитрагина: почвенный и сухой. Впервые культура клубеньковых бактерий на почвенном субстрате была приготовлена в 1911 году на бактериально-агрономической станции в Москве. В настоящее время его производство имеет ограниченное значение, так как технология довольно сложна и трудоёмка при выполнении отдельных операций. Более перспективна технология производства сухого нитрагина.

Сухой нитрагин - порошок светло-серого цвета, содержащий в 1 г не менее 9 млрд. жизнеспособных бактерий в смеси с наполнителем. Влажность не превышает 5-7%. Промышленное производство имеет типичную схему. Необходимо отметить, что важно подбирать штаммы, устойчивые к высушиванию. Для производства посевного материала исходную культуру клубеньковых бактерий выращивают на агаризованной среде, содержащей отвар бобовых семян, 2% агара и 1% сахарозы, затем культуру размножают в колбах на жидкой питательной среде в течение 1-2 суток при 28-30оС и рН 6.5-7.5. На всех этапах промышленного культивирования применяют питательную среду, включающую такие компоненты, как меласса, кукурузный экстракт, минеральные соли в виде сульфатов аммония и магния, мел, хлорид натрия и двузамещенный фосфат калия. Основная ферментация идет при тех же условиях в течение 2-3 суток. Готовую культуральную жидкость сепарируют, получается биомасса в виде пасты с влажностью 70-80%. Пасту смешивают с защитной средой, содержащей тиомочевину и мелассу (1:20) и направляют на высушивание. Сушат путем сублимации ( в вакуум-сушильных шкафах). Высушенную биомассу размалывают. Производительнее высушивание в распылительных сушках, но при этом 75% клеток теряют жизнеспособность. Препараты сухого нитрагина фасуют и герметизируют в полиэтиленовые пакеты по 0.2 - 1 кг, хранят при температуре 15оС не более 6 месяцев. Семена опудривают перед посевом. Внесение нитрагина повышает урожайность в среднем на 15-25%.

1.3.2 Ризоторфин

Препарат клубеньковых бактерий может выпускаться и в виде ризоторфина. Впервые торфяной препарат клубеньковых бактерий был приготовлен в 30-х годах, но технология была создана в 1973-77 гг. Для приготовления ризоторфина торф сушат при температуре не выше 100оС и размалывают в порошок. Наиболее эффективным способом стерилизации является облучение его гамма-лучами. Перед стерилизацией размолотый, нейтрализованный мелом и увлажненный до 30-40% торф расфасовывают в полиэтиленовые пакеты. Затем его облучают и заражают клубеньковыми бактериями, используя шприц, с помощью которого впрыскивается питательная среда, содержащая клубеньковые бактерии. Прокол после внесения бактерий заклеивается липкой лентой. Каждый грамм ризоторфина должен содержать не менее 2.5 млрд. жизнеспособных клеток с высокой конкурентоспособностью и интенсивной азотфиксацией. Препарат хранят при температуре 5-6оС и влажности воздуха 40-55%. Пакеты могут быть весом от 0.2 до 1.0 кг. Доза препарата составляет 200 г на га. Заражение семян производят следующем образом: ризоторфин разбавляют водой и процеживают через двойной слой марли. Полученной суспензией обрабатывают семена. Семена высевают в день обработки или на следующий день.

1.4 Эффективные микроорганизмы - EM (effective microorganisms)

Линия биопрепаратов серии ЭМ - это живое сообщество 86 тщательно подобранных полезных почвенных микроорганизмов, известных в мире как «ЕМ» (effective microorganisms). Препараты серии «ЭМ» были созданы в конце 80-х годов японским учёным Teruo Higa и стали широко применяться во всём мире с середины 90-х годов. Сфера применения препаратов этой серии весьма широка: от возрождения плодородия почвы и утилизации органических отходов до снижения падежа молодняка на животноводческих фермах.

Вот неполный перечень результатов использования ЭМ-технологии:

1. Повышает урожайность практически всех культур в 2 раза, огурцов – в три, томатов в 4,5 – 5 раз.

2. Ускоряет сроки созревания на 10-15 дней;

3. Повышает содержание витаминов и каротина в плодах;

4. Снижает содержание нитратов в плодах;

5. Ускоряет образование гумуса;

6. Переводит почвенные микро- и макроэлементы в легкоусвояемые формы;

7. Преобразует органические отходы за две недели в эффективные удобрения в виде компоста;

8. Устраняет неприятные запахи, возникающие при гниении органики;

9. При использовании безотвальной технологии обработки почвы обеспечивает естественную пористость и проницаемость плодородного слоя до глубины 60-80 см;

10. При использовании в качестве биодобавки в корм животных и птицы уменьшает падёж молодняка в 2,5-3 раза за счёт нормализации кишечной микрофлоры. По этой же причине на 35-40% возрастает усвояемость кормов и суточные привесы.

Спецификой применения ЭМ препаратов в России следует признать их особую эффективность. Чем меньше вносилось в почву химических удобрений, тем быстрее ЭМ восстанавливают естественное плодородие почвы и тем выше, соответственно, урожай. Количество требуемых для внесения органических удобрений сокращается в 5-7 раз.

Чем меньше в рацион животных добавлялось гормонов и антибиотиков, тем меньше отход молодняка после начала применения ЭМ, так как этот препарат является сильным иммуномодулятором. Другими словами, если у животных сохранился какой-то иммунитет, он быстро усилится с помощью ЭМ-препарата. Если корма не хватает и он невысокого качества, а привесы малы или их почти нет, то, после начала применения ЭМ, нормализованная микрофлора кишечника поможет животному усваивать вместо 30-40% корма 70% при таком же рационе.

Одним из главных достоинств ЭМ-технологии является дешевизна её внедрения в существующие технологические циклы. Сочетание простоты использования, умеренной стоимости препаратов и большого экономического эффекта от применения ЭМ-технологий определяют причину её быстрого распространения по миру. Бедные и богатые страны находят свою выгоду в её применении: кто в увеличении привесов и сокращении падежа молодняка, кто в решении экологических проблем загрязнения окружающей среды крупными животноводческими комплексами и устранении социальных конфликтов из-за распространяющихся на многие километры от них трудно переносимых запахов.

Для российского аграрного сектора в его нынешнем тяжелом состоянии применение ЭМ-технологии является хорошим шансом поправить свои дела достаточно быстро и малыми средствами.

Выпуск этих препаратов под торговыми марками «Байкал ЭМ1» и «Тамир» уже налажен в России.

2 Процесс приготовления бактериального удобрения

Рассмотрим процесс приготовления бактериального удобрения более подробно. Весь цикл состоит из 5 этапов, каждый из которых, в свою очередь, подразделяется на несколько шагов.

Схема процесса производства бактериальных удобрений в общем виде

I) Приготовление инокулята:

1) Подбор штамма бактерий, обладающего требуемыми свойствами (достаточная скорость роста, обязательно устойчивость к сухим условиям, и ряд свойств, необходимых для конечного продукта)

2) Засев на твердую питательную среду. Производится в лабораторных условиях при соблюдении стерильности. Требуется для первоначального наращивания биомассы.

3) Пересев на жидкую питательную среду. Также проводится в лабораторных условиях. Необходим для получения количества биомассы, достаточного для помещения в ферментер большого объема.

II) Приготовление среды:

Этот процесс идет параллельно с приготовлением инокулята, питательная среда также используется для предварительного наращивания биомассы бактерий. Состав среды подбирается индивидуально для каждого вида бактерий. Для увеличения эффективности процесса ферментации зачастую требуется достаточно трудоемкий предварительный этап подбора оптимального состава питательной среды.

1) Подбор оптимального состава питательной среды, если требуется (при модернизации производства, при использовании нового штамма бактерий и т.д.).

2) Приготовление требуемого количества среды.

3) Стерилизация среды.

III) Ферментация:

Процесс ферментации проводится, как правило, глубинными методами в таре, предназначенной для конечного продукта, в помещениях, обеспеченных оптимальными для процесса условиями; реже - в ферментерах. Условия культивирования строго асептические, температурный режим как правило 26-30 °С, pH среды нейтральная (6,5 - 7,5). Продолжительность культивирования зависит от требуемого количества биомассы, вида микроорганизма и других условий, в общем подбирается экспериментальным путем.

IV) Сушка:

Существует несколько методов сушки, применяемых в производстве бактериальных удобрений - сублимационная сушка, применение распылительных, ленточных и др. сушилок. Выбор метода сушки и условий процесса (температурный режим, требуемая остаточная влажность) определяются, исходя из эксплуатационных требований получаемого удобрения и того, какие микроорганизмы взяты для производства.

V) Фасовка и выпуск продукта:

Зачастую, стадия фасовки готового удобрения мало выделяется среди предшествующих стадий производства. Это связано с тем, что во многих случаях культивирование микроорганизмов производится непосредственно в товарной упаковке (например, ризоторфин - в ПЭ пакетах (предварительно в них расфасована подготовленная среда - торф), азотобактерин - в стеклянных бутылях и т.д.). Во многом это связано с тем, что срок хранения готового продукта очень недолог, поэтому экономически наиболее приемлема скорейшая его реализация. В других случаях производится сортировка, отбор, фасовка и упаковка готового продукта, для чего может потребоваться введение отдельной производственной линии.

Заключение

В заключение рассмотрим более подробно экономическую целесообразность и обоснованность внедрения производства бактериальных удобрений. По результатам их работы было установлено, что при применении азотфиксирующих бактериальных препаратов рост продуктивности картофеля за 2 года составил от 7% до 43% в зависимости от разведения препарата и сочетания его с другими бакудобрениями (конкретно были исследования силикатные бактерии). Кроме того, была обнаружена зависимость эффективности препарата от типа почвы, в которую он был внесен и глубины заделки саженцев. Немаловажным экономическим фактором так же является и то, что наибольшую эффективность препарат продемонстрировал при среднем разведении (эксперимент проводился при разведениях от 1:200 до 1:1000, при этом наивысший результат был достигнут при разведении 1:400, далее происходило снижение эффективности). Судя по всему, это связано со значительным накоплением в почве продуктов жизнедеятельности бактерий, которые нейтрализуют положительный эффект от их применения.

Из описанных результатов работы можно сделать вывод о том, что при соблюдении ряда условий, либо путем подбора более эффективных биопрепаратов, применение бактериальных удобрений в общем позволяет получать плоды, обладающие большей массой, экологичностью, безвредностью для человека и животных, и содержащие больше витаминов по сравнению с аналогами, выращенными без применения таких удобрений. Все это в итоге повышает экономичность и эффективность сельского хозяйства в целом.

В заключение рассмотрим достоинства и недостатки бактериальных удобрений как таковых. К их плюсам можно отнести следующее:

- Представляют собой 100% экологически чистые препараты

- Относительно простой производственный цикл

- Доступные штаммы микроорганизмов

- Существенная эффективность использования по сравнению с минеральными удобрениями

К недостаткам биопрепаратов можно отнести:

- Зависимость эффективности их действия от состава и свойств почвы, и ряда других факторов

- Расчет товарной упаковки на применение на больших площадях, затруднено использование на малых садовых участках

- Малый срок хранения, некоторая "сезонность" производства

 

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Категория: Рефераты / Биология

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.