Электромагнитное излучение солнца

 

 

Спектр электромагнитного излучения Солнца простирается от радиоволнового диапазона до рентгеновской области. Коротковолновая граница спектра обычно лежит при нескольких ангстремах (1А=10-8 см; энергия кванта с длиной волны L=1 А равна 12,4 кэв) в условиях «спокойного» Солнца и может смещаться до нескольких сотен кэв во время вспышек.

Солнечная постоянная за границей земной атмосферы составляет 1,36 • 108 эрг/см2 • сек, или 1,95 кал/см2*мин. Прямое измерение солнечной постоянной с учетом коротковолновой

 


 


части спектра было выполнено лишь в конце 1967 г. Точность ее определения составляет около 1,0%.

Распределение энергии в различных областях солнечного спектра приведено в табл. 2. Общий вид солнечного спектра за пределами земной атмосферы приведен на рис. 2

Земная атмосфера полностью поглощает солнечное излучение с длиной волны меньше 2900 А. От 3000 до 40 000 А атмосфера прозрачна (так называемое «оптическое окно»). Следующее окно прозрачности начинается при миллиметровых волнах и простирается примерно до 15 м (так называемое радиоокно) . Радиоизлучение заметно ослабляется

 


ионосферой при длинах волн, больших 15 м, и полностью «обрезается» при длине волны около 40 м.

Категория: Рефераты / Астрономия

 

Солнце

Солнце

 

 

Свойства межпланетного пространства в значительной степени, если не полностью, определяются центральным телом солнечной системы — Солнцем. Солнце является источником мощных потоков корпускулярной и электромагнитной радиации, оно же ответственно за структуру межпланетных магнитных полей.

Многие явления на Земле тесно связаны с процессами, протекающими на Солнце. Механизм этой связи пока понят не до конца, но уже ясно, что большую роль в этих процессах играют солнечный ветер, корпускулярные потоки и коротковолновые электромагнитные излучения Солнца. Прежде чем описать проявления солнечно-земных связей, остановимся на элементах солнечной активности.

Солнечная активность

Солнечная активность — комплекс различных явлений, происходящих в атмосфере Солнца и характеризующихся значительными изменениями физических характеристик различных слоев солнечной атмосферы. Очевидна тесная связь между активными процессами в фотосфере (пятна, факелы), хромосфере (вспышки, флоккулы), короне (протуберанцы, конденсации, корональные лучи) и большое значение магнитного поля в этих процессах.

Локальные магнитные поля, обнаруженные в солнечной атмосфере повсеместно, играют весьма существенную, а в ряде случаев даже основную роль в физических процессах на Солнце. Обнаружено также общее магнитное поле Солнца. Поле Солнца различно на разных широтах. В полярных областях (|ф| >55°) его напряженность ~ 1 гс, и оно несколько

Категория: Рефераты / Астрономия

 

Система Земля - Луна

 

Проблемы, связанные с образованием Луны, рассматривались большей частью отдельно от общих космогонических теорий солнечной системы, описанных выше. Луна представляет собой довольно аномальное тело солнечной системы. Она обладает гораздо большей массой по сравнению с массой своей главной планеты, в отличие от любого другого спутника в солнечной системе. Луна характеризуется необычно низкой плотностью: в среднем всего лишь 3,34 г/см3, что ниже плотности метеоритов и намного меньше средней плотности внутренних планет типа Земли. Эти необычные характеристики дали повод многим ученым для утверждения, что образование Луны довольно необычное событие в истории солнечной системы.

Существует четыре основных типа теорий, пытающихся объяснить происхождение Луны. Это теории деления, теории атмосферной конденсации, теории двойных планет, согласно которым Луна образуется на орбите вокруг Земли, и теории захвата, допускающие возможность образования Луны где-то в другом месте солнечной системы и ее последующего захвата Землей. Все эти теории имеют своих приверженцев и в настоящее время. Проведенные в последнее время исследования Луны и лунных пород дали в руки ученых большое количество граничных условий, которым должны удовлетворять эти теории, но не дающие пока возможности остановить выбор на какой-либо одной из них.

Категория: Рефераты / Астрономия

 

Образование солнечной системы

 

Проблема происхождения солнечной системы занимает ученых со времен Декарта, т. е. в течение уже более трех столетий. На протяжении большей части этого времени ученые располагали ничтожно малым количеством фактов о солнечной системе, необходимых для ее объяснения. К этим фактам можно отнести правильность орбит планет, ориентацию векторов моментов количества движения в пределах солнечной системы и медленное вращение Солнца. Теперь очевидно, что последнее свойство не имеет ничего общего с происхождением солнечной системы. Первоначально высокая скорость вращения Солнца могла быть легко уменьшена до нынешнего уровня под влиянием магнитного взаимодействия Солнца и испускаемого им солнечного ветра. Не удивительно, что такое малое число граничных условий может послужить началом для самых разнообразных теорий, пытающихся дать им объяснение. За последние два десятилетия вся проблема происхождения солнечной системы в целом претерпела существенные изменения в связи с установлением новых граничных условий. К ним относятся данные о физических и химических свойствах, основанные на изучении метеоритов, результаты исследования отдаленных тел солнечной системы с помощью космических зондов, а также сведения, полученные при исследовании человеком Луны. Это привело к ограничению теорий происхождения солнечной системы, однако и сейчас их существует еще довольно много.

Почти все теории происхождения солнечной системы, появившиеся за последние три века, можно подразделить на монистические и дуалистические. Монистические теории исходят из того, что развитие Солнца и планет происходит в пределах замкнутой системы, не связанной с какими-либо внешними системами. Дуалистические же теории, наоборот, признают участие в космогоническом процессе и внешних систем, обычно других звезд. Есть теории, которые, признавая отдельные дуалистические посылки, носят в основном монистический характер. Несмотря на возможную двусмысленность, такая классификация все же полезна.

Категория: Рефераты / Астрономия

 

Эволюция звезд и синтез ядер

 

Эволюция звезд и синтез ядер

 

 

Звезда представляет собой огромный шар из раскаленного газа, сохраняющий свою форму благодаря действию собственных сил притяжения (подробнее о структуре звезд смотри работу. С течением времени структура звезды заметно не меняется. Отсюда мы делаем вывод о том, что внутренние части звезд находятся в гидростатическом равновесии. Внутри звезды существует строгое равновесие между силой тяжести, направленной вниз, и тепловым давлением газа, противодействующим силе тяжести. В любой точке внутри звезды давление газа должно быть достаточным для того, чтобы поддерживать вес вышележащих слоев. При перемещении от этой точки внутрь масса вышележащих слоев вещества возрастает, и для того, чтобы поддерживать увеличивающийся вес этой массы, требуется более высокое давление. Давление возрастает от поверхности звезды к центру, и в общем плотность и температура газа также возрастают с приближением к центру. Для центральных областей обычных звезд, таких, как Солнце, типична температура порядка нескольких миллионов градусов по шкале Кельвина. При таких условиях электроны в атомах срываются со своих орбит и все компоненты газа полностью ионизируются. Поэтому газ ведет себя как идеальный при плотностях, превышающих плотность воды более чем в 100 раз (что, в частности, характерно для центра Солнца), так как ядра атомов по размерам во много раз меньше самих атомов и частицы располагают вполне достаточным пространством для движения между соударениями.

Категория: Рефераты / Астрономия

 

Эволюция галактик

Эволюция галактик



Каков бы ни был механизм, вызвавший начало коллапса галактических масс газа и последовавшее за этим образование галактик, по морфологическим формам галактик мы почти не можем давать каких-либо выводов о характере этого коллапса. Галактики отличаются большим разнообразием форм, и не исключено, что причиной этого являются незначительные различия в распределении угловых моментов движения первоначально коллапсировавших облаков газа.

Можно начать с эллиптических галактик, характеризующихся почти сферично-симметричным распределением звезд в пространстве. Подобное распределение возможно только при условии, что звезды имеют почти радиальные орбиты. Такие звезды проходят близ центра своих галактик, а затем удаляются от центра на значительные расстояния. Общий угловой момент движения таких галактик очень невелик. С увеличением общего углового момента галактики степень сплющенности ее растет. Когда система звезд становится достаточно уплощенной, в центральной плоскости галактики начинают появляться газ и межзвездная пыль, а в ходе дальнейшего увеличения сплющенности количество газа и пыли еще более возрастает. Очевидно, звезды в таких галактиках имеют почти круговые орбиты, и, конечно, звезды, образовавшиеся из газа и пыли, должны иметь почти круговые орбиты, лежащие в центральной плоскости галактики.

Системы, в которых газ и пыль присутствуют в больших количествах, характеризуются обычно наличием спиральных рукавов. Они становятся все более заметными, так как спиральные рукава являются местом образования звезд в таких галактиках, и горячие массивные голубые звезды ясно отмечают положение рукавов. Кривизна спиральных рукавов и число их оборотов вокруг центра галактики заключены в широких пределах.

В некоторых галактиках распределение звезд в центральной области — почти сферическое, а в других образуется вытянутая перемычка. Центральные полосы спиральных галактик с перемычками, по-видимому, образовались вследствие особенностей распределения углового момента поступающего извне газа. Если такой газ, приняв форму диска, вращается примерно с постоянной угловой скоростью, то, не обладая достаточной устойчивостью, он неизбежно деформируется и принимает вид перемычки.

Категория: Рефераты / Астрономия

 

Физика ранней вселенной

ФИЗИКА РАННЕЙ ВСЕЛЕННОЙ

За последние несколько лет между двумя: областями науки — физикой частиц высокйх энергий и космологией — отмечалось довольно тесное взаимодействие, которому в значительной степени способствовало открытие фонового микроволнового излучения, позволившее предположить, что Вселенная когда-то была весьма плотной и очень горячей и что она возникла при «большом взрыве». Одним из очень важных следствий такого взаимодействия явилась постановка проблемы — симметрична ли Вселенная относительно вещества и антивещества или несимметрична и обладает ли избытком одного или другого. Такое различие могло оказывать важное влияние на поведение Вселенной на очень ранней стадии ее развития, а в некоторых отношениях может иметь значение и в настоящее время, если допустить возможность проверки степени симметричности Вселенной. Сначала рассмотрим поведение несимметричной Вселенной, предполагая, что все видимые в пространстве галактики состоят из обычного вещества.

Рассмотрение начнем с момента, когда возраст Вселенной составлял приблизительно 10-43 сек. Характерный размер Вселенной, так называемый радиус Хэббла, выражается равенством r=сt, т. е. возрастом Вселенной, умноженным на скорость света. Это расстояние равно всего лишь 3*10-33 см для t=10-43 сек, что намного меньше характерного радиуса любой из элементарных частиц, с которыми мы имеем дело во Вселенной сегодня, так называемого комптоновского радиуса; величина его обратно пропорциональна массе частицы. Радиусы обычных нейтронов и протонов составляют величину порядка 10-13 см, поэтому можно было бы сказать, что Вселенная, возраст которой равен 10-43 сек , еще недостаточно «стара», чтобы содержать в себе обычные нейтроны и протоны.

Категория: Рефераты / Астрономия

 

Космология

Радиотелескопы и оптические телескопы дают нам возможность вести наблюдения лишь весьма ограниченной части Вселенной, поэтому все наши познания в области физики и астрономии распространяются на относительно небольшой объем Вселенной. Отсюда возникает необходимость экстраполировать наши знания к гораздо более крупным временным и пространственным масштабам. При построении гипотезы поведения Вселенной космолог в качестве отправного пункта принимает какой-либо общий физический принцип — так называемый космологический принцип. Следует иметь в виду, что любой такой принцип является чисто предположительным и требует экспериментальной и наблюдательной проверки, как и всякий закон физики. В настоящее время космолог может лишь выбрать такой общий принцип в качестве исходного, принять некоторые границы применимости общей теории относительности, разработать математические следствия из модели Вселенной и проверить, подтверждаются ли экспериментально и наблюдениями предсказанные явления. В основу большинства космологических систем положен принцип, согласно которому в среднем в данное космологическое время любая точка в пространстве ничем не отличается от других точек космического пространства.

Категория: Рефераты / Астрономия

 
Назад Вперед