Квазикристаллы

0

Курсовая работа

Квазикристаллы 

Санкт-Петербург
2012

 



Содержание
1.Введение .................................................................................................... 2
2.Структура квазикристалов ......................................................................... 5
2.1 Типы квазикристаллов и методы их получения .................................... 5
2.2 Методы описания структуры ................................................................. 8
3. Электронный спектр и структурная стабильность ................................ 14
4. Возбуждения решётки ............................................................................ 17
5. Физические свойства квазикристаллов ................................................. 20
5.1 Оптические свойства ............................................................................ 20
5.2 Сверхпроводимость.............................................................................. 21
5.3 Магнетизм ............................................................................................. 23
5.4 Теплопроводность ................................................................................ 26
5.5 Механические и поверхностные свойства .......................................... 28
6. Практические применения .................................................................... 29
7. Заключение ............................................................................................. 31
8. Приложение ............................................................................................ 32
Список литературы
2
1.Введение
В основе симметрии кристаллической решѐтки периодически упорядоченных кристаллов лежит периодичность расположения их атомов - параллельные переносы, или трансляции на порождающие кристаллическую решѐтку основные векторы переводят решѐтку саму в себя. Трансляции элементарной ячейки на основные векторы решѐтки позволяют плотно, т.е. без зазоров и перекрытий, заполнить всѐ пространство и тем самым построить кристаллическую решѐтку. В дополнение к трансляционной симметрии, кристаллическая решѐтка может обладать и симметрией по отношению к поворотам и отражениям. Трансляционная симметрия накладывает ограничения на возможные порядки осей симметрии кристаллических решѐток. Периодически упорядоченные кристаллы могут иметь оси симметрии второго, третьего, четвѐртого или шестого порядков. Повороты вокруг осей симметрии пятого порядка и любого порядка выше шестого не переводят кристаллическую решѐтку саму в себя, поэтому такие оси симметрии для кристаллов запрещены.
В настоящее время хорошо известно, что периодичность не является необходимым условием существования дальнего атомного порядка. Квази-кристаллы обладают строго апериодическим дальним порядком квазипериодического типа. Трансляционной симметрии, ограничивающей возможные порядки осей симметрии, у квазикристаллов нет, поэтому они могут иметь оси симметрии и тех порядков, которые запрещены для обычных периодически упорядоченных кристаллов. Проиллюстрируем это обстоятельство на примере "паркета Пенроуза", представляющего собой модель решѐтки двумерного квазикристалла. Отметим, что понятие элементарной ячейки не допускает простого обобщения на квазикристаллы, поскольку для построения квазикристаллических решѐток необходимы струк-турные блоки двух или более типов. Паркет Пенроуза состоит из двух различных структурных блоков — узкого и широкого ромбов с острыми углами при вершинах π/5 и 2π/5 соответственно. Укладка паркета этими двумя ромбами, начиная с пяти широких ромбов, имеющих общую вершину, по определѐнным правилам приводит к квазипериодическому покрытию плоскости без зазоров и перекрытий. Паркет Пенроуза обладает единственной точкой, вращение вокруг которой на угол 2π/5 переводит решѐтку саму в себя, что соответствует точной оси симметрии пятого порядка. Кроме того, паркет Пенроуза обладает вращательной симметрией десятого порядка в том смысле, что поворот на угол π/5 приводит к решѐтке, отличие которой от исходной статистически несущественно, — такие решѐтки неразличимы, например, в дифракционных экспериментах. По аналогии с построением паркета Пенроуза возможно построение квазикристаллической решѐтки и в трѐхмерном случае. Одним из примеров такой решѐтки является сеть Аммана-Маккея, которая обладает икосаэдрической симметрией и представляет собой плотное заполнение пространства по определѐнным правилам вытянутыми и сплюснутыми ромбоэдрами с определѐнными углами при вершинах.
Апериодический дальний атомный порядок с икосаэдрической симметрией впервые обнаружили Шехтман, Блех, Гратиа и Кан, которые в 1984 г. сообщили о наблюдении необычных картин дифракции электронов в быстро
3
охлаждѐнном сплаве А186Мn14. Во-первых, было видно наличие дальнего порядка некристаллического типа — острые брэгговские пики при наличии оси симметрии десятого порядка, несовместимой с периодическим упорядочением. Во-вторых, интенсивность дифракционных пятен не уменьшалась с расстоянием от центра дифракционной картины, как в случае периодически упорядоченных кристаллов. В-третьих, при рассмотрении последовательности рефлексов от центра дифракционной картины к еѐ периферии оказалось, что расстояния между рефлексами связаны степенями числа τ= (√ + 1)/2 — золотого сечения (см.приложение). В-четвѐртых, если брэгговские рефлексы периодически упорядоченного кристалла индексируются тремя индексами Миллера, то описание дифракционной картины сплава А186Мn14 потребовало шести индексов. Полный анализ дифракционных картин, полученных вдоль различных кристаллографических направлений, показал наличие шести осей симметрии пятого порядка, десяти осей симметрии третьего порядка и пятнадцати осей симметрии второго порядка. Это позволило прийти к заключению о том, что структура сплава А186Мn14 имеет точечную группу симметрии ̅ ̅, т.е. группу икосаэдра.
Теоретическое обоснование существования брэгговских пиков на дифракционных картинах структуры с икосаэдрической симметрией дали Левин и Штайнхардт. Они построили модель квазикристалла, исходя из двух элементарных ячеек с иррациональным отношением их числа и показали, что дифракционная картина апериодической упаковки с икосаэдрической симметрией имеет брэгговские рефлексы на плотном множестве узлов обратного пространства с интенсивностями, которые находятся в хорошем согласии с полученными на сплаве А186Мn14. Квазикристаллическая структура может быть построена апериодической упаковкой пространства без пустот и перекрытий несколькими структурными единицами с соответствующим мотивом — атомной декорацией. Эквивалентный метод построения квазикристаллической структуры состоит в апериодической упаковке пространства атомными кластерами одного типа, перекрывающимися в соответствии с определѐнными правилами, — метод квазиячеек. Реализуются квазикристаллические структуры в металлических сплавах, причѐм реальные квазикристаллы часто представляют несовершенную, т.е. дефектную, реализацию совершенной квазикристаллической структуры в основном состоянии. Квазикристаллическая структура близка по энергии к другим структурам, и, в зависимости от условий приготовления, термообработки и состава, квазикристалл может находиться в совершенном квазикристаллическом состоянии даже без присущих ему статических искажений — фазонов, или в микрокристаллическом состоянии с длиной когерентности порядка 102Å и общей псевдоикосаэдрической симметрией.
Термин "апериодический кристалл" ввѐл Шрѐдингер в связи с обсуждением структуры гена. В физике твѐрдого тела до открытия квазикристаллов исследовались несоизмеримо модулированные фазы и композитные кристаллы с модулированной структурой, дифракционные картины которых содержат брэгговские максимумы, расположенные с обычной кристаллической симметрией, но окружѐнные сателлитными рефлексами. Было также известно о существовании икосаэдрического ближнего порядка в сплавах со сложной
4
структурой, в металлических стѐклах, в соединениях бора, содержащих связанные между собой икосаэдры В12, в анионе (В12Н12)2-, в кластерах щелочных и благородных металлов и в интерметаллических соединениях, известных сегодня как периодические аппроксиманты квазикристаллов.
Брэдли и Гольдшмидт, изучавшие медленно охлаждѐнные сплавы в тройной системе Al-Cu-Fe методом рентгеноструктурного анализа, в 1939 г. сообщили о существовании тройного соединения состава Al6Cu2Fe с неизвестной структурой, названного ими фазой ψ в 1971 г. Преварский исследовал фазовые равновесия в системе Al-Cu-Fe и показал, что фаза ψ обладает незначительной областью гомогенности и является единственной тройной фазой, существующей в этой тройной системе при температуре 800 °С. В 1987 г. Цай с соавторами показали, что сплав с составом, близким к составу ψ-фазы, представляет собой термодинамически стабильный икосаэдрический квазикри-сталл. В 1955 г. Харди и Силкок обнаружили в системе Al-Cu-Li фазу, названную ими фазой Т2, дифракционная картина которой не поддавалась индексированию. Состав этой фазы близок к Al6CuLi3 и соответствует икосаэдрической фазе Al-Cu-Li. В 1978 г. Састри с соавторами наблюдали дифракционную картину с псевдопентагональной симметрией в системе Al-Pd. Позднее в этой системе была обнаружена декагональная квазикристаллическая фаза. В 1982 г. Падежнова с соавторами сообщили о существовании в системе Y-Mg-Zn фазы R, порошковая рентгенограмма которой не была ими расшифрована; впоследствии Луо с соавторами показали, что эта фаза обладает икосаэдрической структурой.
Примечательно, что квазикристаллические сплавы содержат атомы переходных, благородных или редкоземельных металлов, что, возможно, и определяет кристаллохимию ближнего атомного порядка. Многие квазикристаллические фазы существуют на равновесной фазовой диаграмме в относительно узкой области концентраций. Равновесные термодинамические, транспортные, магнитные и механические свойства квазикристаллов, их спектры одночастичных и коллективных возбуждений отличаются от таковых для близких им по составу кристаллических и аморфных фаз. Специфика свойств квазикристаллов определяется как апериодическим дальним порядком, так и локальным атомным строением. Будучи сплавами металлических элементов, квазикристаллы не являются обычными металлами, изоляторами или полупроводниками. В отличие от изоляторов, плотность электронных состояний на уровне Ферми п( ) в квазикристаллах отлична от нуля, но ниже, чем у типичных металлов. К характерным особенностям электронного спектра квазикристаллов относятся псевдощель в плотности электронных состояний на уровне Ферми и тонкая пиковая структура п(Е), что отражается на их физических свойствах.
5
2.Структура квазикристаллов
2.1 Типы квазикристаллов и методы их получения
Кроме икосаэдрических квазикристаллов, существуют квазикристаллы с другой ориентационной симметрией. Аксиальные квазикристаллы показали наличие поворотных осей симметрии восьмого, десятого и двенадцатого порядков и были названы соответственно октагональными, декагональными и додекагональными фазами. Эти фазы имеют квазипериодическое расположение атомов в плоскостях, перпендикулярных осям симметрии восьмого, десятого и двенадцатого порядков. Сами же квазипериодические плоскости вдоль этих осей упакованы периодическим образом.
Сплавы А1-Мп и открытые вскоре другие квазикристаллические фазы оказались метастабильными — при нагреве они переходили в периодически упорядоченное состояние. Их можно было получить методом быстрой закалки расплава либо другими экзотическими методами. Метастабильные квазикристаллы обладали высокой степенью беспорядка, что осложнило исследования возможного влияния квазипериодичности на физические свойства. Результаты, полученные на образцах метастабильных фаз, указывали на то, что по своим физическим свойствам такие квазикристаллы близки к разупорядоченным металлам. Открытие икосаэдрической фазы А1-Сu-Li показало, что квазикристаллы могут быть по крайней мере локально устойчивыми и расти практически при равновесных условиях. В то же время анализ дифракционных картин этой и ряда других квазикристаллических фаз показал наличие в них специфических структурных дефектов — фазонов. Предполагалось, что фазоны — это неотъемлемая черта квазикристаллических структур.
Новые возможности для экспериментального исследования свойств твѐрдых тел с квазикристаллической структурой появились после открытия в тройных системах А1-Сu-Fe, А1-Сu-Ru и Аl-Сu-Os термодинамически стабильных фаз, кристаллизующихся в гранецент- рированную икосаэдрическую (ГЦИ) структуру, в которых отсутствуют фазонные искажения. Первые же эксперименты, проведѐнные на этих фазах, показали, что квазикристаллы следует причислять к отдельному и весьма необычному классу твѐрдых тел, сочетающих как свойства стѐкол, так и свойства, характерные для перио-дически упорядоченных кристаллов. Интересным объектом исследований оказалась термодинамически стабильная ГЦИ-фаза в тройной системе А1-Мn-Рd, брэгговские пики которой не уширены структурными дефектами даже без отжига. Фазовые равновесия в тройной системе А1-Мn-Рd позволяют выращивать монокристаллы икосаэдрической фазы стандартными методами, что дало возможность провести детальные исследования структуры этой фазы и еѐ свойств. Высокая степень структурного совершенства монокристаллов икосаэдрической фазы А1-Мn-Рd была подтверждена наблюдением эффекта Бормана — аномального прохождения рентгеновских лучей.
К настоящему времени обнаружено более ста систем на основе алюминия, галлия, меди, кадмия, никеля, титана, тантала и других элементов, в которых образуются квазикристаллы. Как уже говорилось, термодинамически стабильные икосаэдрические фазы могут быть получены и при нормальных условиях затвердевания. Квазикристаллы также могут быть синтезированы с
6
помощью таких методов, как конденсация из пара, затвердевание при высоком давлении, расстеклование аморфного вещества, распад пересыщенных твѐрдых растворов, межслойная диффузия, имплантация ионов, механоактивационный процесс и другие. Многие методы, которые используются для получения кристаллических и некристаллических фаз, применяются также и для синтеза квазикристаллов.
Образование квазикристаллов из расплава принципиально отличается от образования металлических стѐкол. Металлические стѐкла наиболее легко образуются вблизи эвтектического состава. Это составы, при которых ни одна кристаллическая фаза не является стабильной, так что в равновесии сплав должен распадаться на две или большее количество кристаллических фаз различного состава. В связи с тем, что химическое расслоение является диффузионно-контролируемым процессом, этот процесс является метастабильным, и быстрое охлаждение расплава способствует образованию металлического стекла. Квазикристаллы, напротив, не образуются вблизи составов, близких на фазовой диаграмме к эвтектическому. Отличительной чертой равновесных фазовых диаграмм систем, в которых образуются квазикристаллические фазы, является наличие перитектики. Эти особенности фазовых диаграмм типичны для систем, где имеются сильные взаимодействия между различными атомными составляющими и тенденция к образованию соединений. Квазикристаллы образуются в этих системах путѐм формирования центров зарождения и последующего роста.
Ещѐ одним свойством, свидетельствующим о дальнем порядке в расположении атомов в квазикристаллах, является существование огранки наблюдаемых фаз. Морфология квазикристаллической фазы зависит от условий роста, обнаруживая при этом ряд интересных особенностей. Когда в результате синтеза образуется квазикристаллическая фаза, морфологически часто отражается только еѐ точечная группа симметрии. Например, форма дендритов метастабильной икосаэдрической фазы Al-Mn — пентагональный додекаэдр. Дендриты же термодинамически стабильной икосаэдрической фазы в системе Al-Cu-Li имеют огранку в форме ромбического триаконтаэдра. В системе Al-Pd-Mn икосаэдрические квазикристаллы ограняются в виде икосидодекаэдра. Исследование формирования огранки икосаэдрической фазы в системе Al-Cu-Fe показало, что грани формируются вдоль плотных атомных плоскостей в соответствии с требованием минимума поверхностных напряжений.
Несмотря на то, что чистые металлы, как правило, кристаллизуются с образованием простых структур, сплавление может приводить к образованию интерметаллических соединений с довольно сложной структурой. Так, например, две сложные кристаллические фазы α-Mn12(Al,Si)57 и Mg32(Al,Zn)49 обнаруживают локальный изоморфизм со структурой соответствующих ква-зикристаллов. Каждое из упомянутых соединений представляет объѐмноцентрированную кубическую (ОЦК) упаковку кластеров, состоящих из концентрических атомных оболочек с икосаэдрической симметрией и содержащих 54 атома в первом случае (икосаэдрический кластер Маккея) и 44 атома во втором (триаконтаэдрический кластер Бергмана). Подобные соединения называются периодическими аппроксимантами квазикристаллов.
7
Существует и третий вид кластера (кластер Цая), содержащий 66 атомов — ОЦК-упаковка таких кластеров типична для кристаллических сплавов типа Cd6Yb, Zn17Sc3, являющихся периодическими аппроксимантами соответствующих бинарных квазикристаллов. Исследования структуры с помощью просвечивающей электронной микроскопии высокого разрешения показали, что кластерное строение характерно и для квазикристаллов, однако кластеры упакованы апериодически в пространстве и являются взаимопроникающими, так что квазикристаллы являются не простым кластер-ным агрегатом, а структурой с апериодическим дальним порядком и локальным кластерным строением.
На тесную связь структуры аппроксимант и квазикристаллов указывает сходство их дифракционных картин. Наиболее интенсивные дифракционные пики кристаллических аппроксимант расположены вблизи аналогичных пиков родственных им квазикристаллов. Ещѐ одним указанием на локальный изоморфизм квазикристаллов и соответствующих аппроксимант является когерентная ориентационная связь их зѐрен. Квазикристаллы часто образуются вблизи состава аппроксимант, поэтому одним из способов поиска новых квазикристаллических соединений является исследование композиционных областей вблизи составов их кристаллических аппроксимант.
8
Рис. 2.1 Двухфрагментная модель
двумерного кристалла – паркет Пенроуза,
составленный из узких и широких ромбов.
2.2 Методы описания структуры
Апериодические структуры, приводящие к острым брэгговским рефлексам, например паркет Пенроуза, рассматривались ещѐ до 1984 г. Эти структуры в своей основе обладают дальним порядком ориентационного типа. Для описания дифракционных свойств квазикристаллических объектов рассматривались структуры, носящие названия квазипериодических покрытий, или замощений плоскости и пространства.
Покрытием прямой называется еѐ разбиение на отрезки из заданного набора. Среди получающихся таким образом покрытий выделяют класс квазипериодических покрытий, у которых отсутствует дальний порядок трансляционного типа. Именно они используются для структурных моделей квазикристаллов.
Среди предложенных моделей остова структуры квазикристаллических объектов самой распространѐнной, по-видимому, следует считать двухфрагментарную модель, основанную на квазипериодическом покрытии прямой, плоскости или пространства двумя элементарными структурными единицами. Для одномерного квазикристалла данная модель приводит к последовательности Фибоначчи коротких S и длинных L отрезков с S=1 и L=τ. В двумерном случае двухфрагментарная модель представляет собой паркет Пенроуза, составленный из ромбов двух типов с острыми углами при вершинах π/5 и 2π/5(рис 2.1), а в трѐхмерном — образуемое ромбоэдрами двух типов обобщение паркета Пенроуза, называемое сетью Аммана-Маккея. Общим для перечисленных выше реализаций двухфрагментарной модели является отсутствие дальнего порядка транс-ляционного типа при сохранении дальнего порядка ориентационного типа, что приводит к свойству, известному в случае паркета Пенроуза как теорема Конвея: любая конечная конфигурация паркета встречается в нѐм квазипериодически бесконечное число раз.
9
Рис.2.2 Построение одномерного квазикристалла
(цепочки Фибоначчи) проекционным методом; угол
наклона оси

Категория: Курсовые / Курсовые по физике

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.