Чувствительность глаза к свету

0

При увеличении интенсивности света учащаются импульсы, идущие от рецепторов сетчатки, причем интенсивность света выражается в частоте импульсов. К сожалению, невозможно зарегистрировать электрическую активность рецепторов глаза позвоночных, потому что у них сетчатка «вывернута наизнанку», так что электроды не могут достичь рецепторов без больших повреждений. К тому времени, когда импульсы достигают зрительного нерва, они усложняются благодаря взаимосвязям нервных клеток, расположенных в различных слоях сетчатки.

Существует, однако, такой глаз, в котором рецепторы непосредственно связаны с отдельными нервными волокнами: это глаз своего рода живого ископаемого, краба Limulus, который живет на восточном побережье США. Отдельные нервные волокна глаза этого древнего краба оказались наиболее пригодными для проведения исследования, что, однако, трудно было предположить заранее.

Было обнаружено, что в рецепторных клетках глаза этого краба частота импульсов связана приблизительно логарифмической зависимостью с интенсивностью света.

Первая кривая показывает низкую частоту импульсов после одноминутной темновой адаптации глаза. На другой кривой видно, что частота импульсов увеличивается, когда глаз находится в темноте более длительное время. Это соответствует нашему собственному ощущению увеличения яркости света после темновой адаптации.

Что происходит, когда мы смотрим на источник очень слабого света в темной комнате? Можно было бы думать, что, если нет света, отсутствует и активность, передающаяся от сетчатки в мозг; когда же появляется какой-нибудь свет, сетчатка сигнализирует о нем и мы видим свет. Однако дело обстоит не так просто. При полном отсутствии света сетчатка и зрительный нерв не являются полностью инактивными. В них всегда имеется некоторая остаточная нервная активность, которая доходит до мозга, даже если отсутствует какая-либо стимуляция глаза светом. Об этом говорит непосредственная регистрация активности зрительного нерва глаза кошки, полностью адаптированного к темноте, и мы имеем все основания предположить, что это справедливо и по отношению к глазу человека и других животных.

Этот факт постоянного фона спонтанной активности имеет большое значение. Глаз удивительно чувствителен, мы можем видеть вспышку света столь незначительную, что ее трудно зарегистрировать каким-либо искусственным прибором. Однако глаз был бы еще более чувствителен, если бы не было спонтанной активности зрительной системы, которая представляет собой постоянную проблему для мозга.

 

 

 

 

Представим себе нервные импульсы, приходящие в мозг; являются ли они результатом воздействия света на глаз или они являются просто спонтанным «шумом» зрительной системы? Проблема, стоящая перед мозгом, заключается в том, чтобы «решить», отражает ли эта нервная активность внешнее раздражение или это только «шум», который следует игнорировать. Эта ситуация очень хорошо знакома инженерам связи, потому что во всех чувствительных детекторах может возникать шум — случайная генерация сигналов, которые всегда ухудшают чувствительность детекторов. Существуют способы уменьшения вредного влияния шума; они с успехом применяются в радиоастрономии и при обнаружении слабых землетрясений; шум маскирует источники радиоволн в космосе и на Земле, подобно тому как маскируются слабые зрительные сигналы. Глаз использует некоторые приспособления, уменьшающие влияние «шума» и значительно повышающие длительность периода, в течение которого происходит интеграция сигнала, — действие этого механизма мы видели в эффекте Пульфриха, — путем запроса дополнительных подтверждающих сигналов от отдельных рецепторов, которые выступают в качестве независимых свидетелей.

Чувствительность глаза к свету

Одним из самых старых законов экспериментальной психологии является закон Вебера. Согласно ему, наименьшее различие интенсивностей, которое может быть воспринято, прямо пропорционально исходной интенсивности света. Например, если в ярко освещенную комнату вносится одна горящая свеча, увеличение освещения едва различимо, но если комната освещена плохо, — скажем, в ней горит только несколько свечей, — тогда добавление еще одной свечи дает заметное увеличение освещенности. Фактически мы можем различать изменение интенсивности, равное примерно одному проценту по отношению к исходной освещенности. Это выражается в формуле Δ I/ ΔI = const (где Δ означает минимальную добавку интенсивности к исходной интенсивности I). Этот закон полностью справедлив в отношении довольно широкого диапазона исходных интенсивностей, но он неприменим в случаях малой исходной интенсивности. Это можно видеть из рисунке, где — если бы закон Вебера был справедлив и при нулевой интенсивности — мы имели бы прямую горизонтальную линию, указывающую на неизменность (инвариантность) едва заметных различий в интенсивности ΔI/I по отношению ко всем исходным значениям I. Фактически мы получаем кривую, которая изображена на этом графике, указывающую, что величина Δ I/I значительно увеличивается, когда исходная интенсивность I света становится небольшой. Это нарушение закона Вебера объясняется главным образом тем, что имеются некоторые остаточные разряды возбуждения клеток сетчатки даже при отсутствии света. Эта остаточная активность для мозга эквивалентна более или менее постоянной слабой освещенности, которая добавляется к исходной. Мы можем оценить ее величину, экстраполируя кривую за пределы оси Y и считывая значения этого графика. Это выражает уровень шума в единицах интенсивности света.

Скрытая константа k может быть отнесена за счет «шума» сетчатки. Существуют доказательства того, что этот внутренний шум зрительной системы увеличивается с возрастом: повышение уровня шума, безусловно, является отчасти причиной постепенного ухудшения остроты зрения при старении.

То положение, что различительная чувствительность глаза лимитируется шумом нервной системы, имеет далеко идущие выводы. Из него следует, что старое представление о пороговых интенсивностях, которых должны достичь стимулы, прежде чем они вызовут какой-либо ответ нервной системы, — неверно. Сейчас мы считаем, что каждый стимул оказывает воздействие на нервную систему, но он воспринимается как внешний сигнал только тогда, когда вызываемые им изменения нервной активности превосходят обычный уровень шума. Пример этого можно видеть на рисунке. На нем изображено пятно света, являющееся исходным фоном (I), к которому прибавляется различимый свет (Δ I) Эти две интенсивности света приводят к появлению нервных импульсов, частота которых подчиняется статистическим закономерностям. Проблема, возникающая перед мозгом, состоит в том, чтобы «решить», когда увеличение числа импульсов является просто случайным, а когда оно возникает вследствие увеличения интенсивности светового сигнала. Если бы мозг принимал любое увеличение числа импульсов по отношению к средней активности за объективный сигнал, тогда мы «видели» бы вспышки света, отсутствующие в действительности, по крайней мере, в половине случаев. Таким образом, мы приходим к мысли, что не обходимы некоторые значимые различия, чтобы возникшая нервная активность оценивалась как результат воздействия сигнала. Наименьшее различие освещенности (Δ I) которое мы можем видеть, определяется не просто чувствительностью рецепторов сетчатки, но также и различием в частоте нервных импульсов, необходимым для того, чтобы воспринять его как сигнал.

Иногда мы видим вспышки, которых на самом деле нет. По-видимому, они появляются вследствие шума, переходящего требуемый уровень значимости, вследствие готовности к восприятию сигнала, но это случается но часто.

Определение уровня, выше которого активность принимается за ответ на реальное воздействие, и используется для оценки надежности данной чувствительной системы. Существуют доказательства того, что этот уровень может колебаться и зависит от нашей «установки». Когда мы особенно осторожны, требуется большая информация и чувствительность снижается.

То, что сказано выше по поводу восприятия интенсивностей света, применимо к нервной системе в целом. Bсe это справедливо не только для различения интенсивностей света, но также и в отношении абсолютного порога различения света в темноте. Абсолютный порог также определяется наименьшим сигналом, который может быть надежно выделен из случайного шума зрительной системы, существующего в мозгу и при отсутствии воздействия света на глаз.

 

Используемая литература: Р. Л. Грегори
Глаз и мозг. Психология зрительного восприятия: Л.Р. Грегори
под ред. Э. Пчелкина, С. Елинсон.-м. 1970 г.

 

Скачать реферат: Chuvstvitelnost-glaza-k-svetu.rar

Пароль на архив: privetstudent.com

Категория: Рефераты / Биология

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.