Осушка воздуха

0

Осушка воздуха

Используются нерегенеративные или регенеративные осушители воздуха. Для кратковременных космических полетов используются как те, так и другие осушители воздуха. Для космических полетов длительностью свыше 30—40 суток, по всей видимости, найдут практическое применение только регенеративные осушители воздуха.

К нерегенеративным способам осушки воздуха следует отнести химические способы, подразделяемые на две группы: основанные на химическом взаимодействии и на образовании кристаллогидратов.

Процесс взаимодействия осушающих веществ первой группы заключается в их разрушении при контакте с водой и образовании новых молекул. При взаимодействии осушающих веществ второй группы с водой молекулы воды не разрушаются, а входят в новое соединение как самостоятельные.

К веществам первой группы относятся большинство окислов, перекисей и надперекисей щелочных и щелочноземельных металлов, а также ангидриды некоторых кислот. Ко второй группе осушающих веществ относятся гигроскопические соли некоторых органических веществ типа LiCl, СаСl2, ZnCL2 и др.

К регенеративным способам осушки воздуха следует отнести физико-химические и физические.

Физико-химические способы осушки воздуха в свою очередь могут быть подразделены на сорбционные и сорбционные с образованием кристаллогидратов.

Сорбенты, используемые для осушки воздуха, могут быть разделены на твердые и жидкие. К твердым сорбентам относятся силикагели, алюмогели, активированный уголь и др. К жидким сорбентам относятся серная кислота, растворы различных солей и другие гигроскопические жидкости.

Физические способы осушки воздуха могут быть основаны либо на конденсации, либо на вымораживании водяных паров.

Отличительной чертой физических способов осушки воздуха, а также способов, основанных на применении жидких сорбентов, является необходимость специальной организации этих процессов в условиях реального космического полета (динамической невесомости) . Это определяется самой системой, состоящей из трех фаз: газ — жидкость — твердое тело.

Химические способы осушки воздуха

При хемосорбции абсорбируемое вещество претерпевает химические изменения, определяемые характером химической связи и природой поверхностных радикалов. Скорость хемосорбции зависит от числа столкновений молекул с поглощающей поверхностью, коэффициента конденсации, энергии активации и вероятности столкновения молекул водяного пара с активными центрами. Хемосорбция протекает всегда при температуре, соответствующей определенной энергии активации.

Интенсивность процесса хемосорбции водяного пара из паровоздушной смеси по аналогии со скоростями протекания химических реакций определяется как химической кинетикой, так и гидродинамикой потока, характеризующей механизм переноса массы вблизи поглощающей поверхности. Гетерогенная реакция хемосорбции водяного пара протекает в несколько стадий: подвод реагирующих молекул к поверхности, на которой осуществляется реакция; собственно гетерогенная реакция (абсорбция); отвод продуктов реакции из зоны взаимодействия.

Для хлористого лития (LiCl) кинетические зависимости, показывающие связь скорости потока паровоздушной смеси и влажности воздуха с интенсивностью поглощения им водяного пара, представлены на рис. 6.

Из приведенных на рис. 6 зависимостей следует, что скорость реакции взаимодействия водяного пара с LiCl весьма велика и не оказывает существенного влияния на суммарную скорость хемосорбции и что самой медленной стадией является диффузионный подвод водяного пара к поглощающей поверхности, т. е. интенсивность процесса хемосорбции в данном случае определяется диффузионной кинетикой.

 

 

 

Рис. 6. Кинетические зависимости интенсивности поглощения (U) водяного пара при различных скоростях (в м/сек) потока паровоздушной смеси

0; 2 — 2; 3— 3,5; 4 — 4

 

 

 

В процессе поглощения влаги гигроскопическими солями типа LiCl, СаС12 наблюдается кристаллизационное присоединение ее, при чем относительная влажность над солью при незначительных колебаниях температуры остается практически постоянной и зависит от изменения кристаллизационной формулы вещества.

При взаимодействии таких веществ с потоком влажного воздуха на их поверхности образуется слой раствора, замедляющий дальнейший процесс поглощения водяных паров. Отрицательным фактором является изменение первоначальной формы гигроскопических солей при поглощении ими большого количества влаги. Следует также иметь в виду, что LiCl токсичен и вызывает коррозию металлов. Высушивающая способность некоторых веществ, применяемых при осуществлении химической осушки воздуха, представлена в табл. 1.

 

 

Таблица 1. Высушивающая способность некоторых веществ, применяемых при химической осушке воздуха

 

 

 

 


Физико-химические способы осушки воздуха

Как уже отмечалось, сорбенты физико-химических методов осушки воздуха могут быть твердыми и жидкими.

Осушка воздуха твердыми поглотителями влаги осуществляется за счет физико-химиче

ского взаимодействия паров воды и сорбента, т. е. сорбции влаги, образования гидратов и растворения. Твердые сорбенты представляют собой гели (природные сорбенты) и импрегнированные осушители.

Осушка воздуха гелями осуществляется путем адсорбции с последующей капиллярной конденсацией воды в пористой структуре осушителя. К твердым сорбентам следует отнести силикагель, алюмогель, активированный уголь.

Силикагель представляет собой твердое, стекловидное, химически инертное, однородное высокопористое вещество, состоящее на 99% из двуокиси кремния (SiО2). В зависимости от величины пор силикагель делится на мелкопористый с насыпной массой 700 кг/ /м3 и крупнопористый с насыпной массой 400-500 кг/м3.

Алюмогель или активированный алюминий в основном состоит из окиси алюминия (Аl2Oз) с примесями соды и окислов других металлов. Средняя поверхность капилляров в нем составляет примерно 2,5*106 см2/г, объемная насыпная масса 800 кг/м3» плотность (истинная) 3,25 г/см3.

Активированный уголь — древесный уголь специально обработанный с целью увеличения адсорбирующей поверхности и освобождения пор от смолистых веществ. Активированный уголь применяется в виде зерен различных размеров от 1 до 7 мм или в виде порошка. Адсорбционные свойства активированного угля зависят от величины его удельной активной поверхности, определяемой порами диаметром меньше 1*10-5 мм.

Адсорбция в основном обусловлена физическими силами притяжения, т. е. неполярными силами Ван-дер-Ваальса, силами дипольного взаимодействия и поляризационными силами.

Для капилляров с радиусом больше 10-5 см давление насыщенного пара над мениском практически равно давлению насыщенного пара над плоской поверхностью.

Пар из свободного пространства диффундирует в капилляр, если упругость его выше упругости насыщенного пара над вогнутой поверхностью мениска. Стенки капилляра адсорбируют пар и покрываются пленкой влаги, которая образует мениск. С его появлением возникает капиллярная конденсация, или сорбция пара. Микрокапилляры (r>10-5 см) заполняются водой только при непосредственном соприкосновении с нею. Они не сорбируют влаги и способны отдать ее в атмосферу, насыщенную водяными парами.

 

 

 

 

 

Рис. 7. Зависимость равновесного массосодержания силикагеля от влагосодержания (d) при различных температурах

Температура (в °С):

1 — 5;    3 — 25;   5 — 45;   7 — 65;

2 — 15;   4  —  35;  6— 55;   5 — 75

Поглощающая способность силикагеля зависит от температуры влажного воздуха и парциального давления пара: с увеличением температуры и уменьшением парциального давления пара эта способность падает (рис. 7).

Как видно, применять силикагели при температуре свыше 35° С нецелесообразно.

В процессе осушки воздуха сорбентами их сорбционная способность снижается, и при достижении определенного состояния они уже не обеспечивают требуемого понижения влажности воздуха и нуждаются в регенерации. Наиболее распространенным способом регенерации является пропускание через сорбент воздуха, имеющего температуру +160 : 170°С и подсушенного до температуры точки росы — не выше +28 : +30° С.

Осушители с твердыми адсорбентами являются двухсекционными аппаратами. В одной секции такого аппарата происходит адсорбция влаги, в другой — регенерация с использованием электрического, газового или парового нагрева.

Адсорбционная способность алюмогеля ниже, а степень осушки воздуха выше, чем у силикагеля. Алюмогель целесообразно применять при температуре воздуха не выше 25° С.

По данным некоторых авторов, адсорбенты, применяемые для осушки воздуха, должны иметь высокую адсорбционную способность при нормальных условиях, обладать химической стабильностью и стойкостью, быть механически прочными, регенерироваться при возможно низких температурах, быть теплостойкими при переменных температурах регенерации, обладать малым объемным весом и не набухать.

Ко второй группе осушителей воздуха относятся импрегнированные осушители, изготовленные из пористых материалов, на поверхность которых нанесены гигроскопические вещества.

В этих осушителях сорбция влаги осуществляется как слоем гигроскопического вещества, так и путем капиллярной конденсации влаги.

По мере поглощения влаги гигроскопическая добавка превращается в кристаллогидрат или раствор, который принимает влагу, пока ее концентрация в нем не станет такой же, как в осушаемом воздухе.

В качестве носителей гигроскопических добавок применяют силикагель, алюмогель, активированный уголь и др.

Емкость импрегнированного осушителя определяется пористостью носителя и количеством гигроскопической добавки. Количество сорбированной влаги при 20° С у осушителей на основе крупнопористого силикагеля достигает 61% массы осушителя; на основе мелкопористого алюмогеля — 25%; на основе активированного угля — 62 %.

Например, СаСl2, нанесенный на поверхность крупнопористого силикагеля, увеличивает его емкость по воде примерно в шесть раз.

При выборе гигроскопических добавок определяющим является минимальное давление водяного пара над ее растворами в интервале температур от 5 до 40° С.

Носитель должен хорошо пропитываться раствором гигроскопической добавки, иметь небольшую плотность и прочно удерживать раствор при инерционных перегрузках.

Физические методы осушки воздуха и способы разделения газожидкостных фаз в условиях динамической невесомости.

 

 

 

 

 

Рис. 8. Принципиальная схема влагоотделителя

1— вход жидкостно-газовой смеси,

2— сетчатый фильтр-коагулятор,

3 — дренажные трубки,

4 — выход отделенной жидкости,

5 — выход газовой смеси.

 

 

 

 

 

Рис. 9. Принципиальная схема влагоотделителя циклонного типа

1 — кожух,

2 — вход влажного воздуха,  

3 — внутренняя труба,   

4 — путь воздуха,

5 — выходной газовый штуцер,

6 — сливное отверстие.

 

 

 

Рис. 10. Принципиальная схема влагоотделителя с осевым входом

1 — корпус,

2 — вход влажного воздуха, 

3 — путь влажного воздуха,

4 — разделительная диафрагма,

5 — отвод воды,

6 — выход воздуха.

 

 

Физические способы осушки воздуха заключаются в охлаждении его до температуры ниже точки росы или льда. В зависимости от конечной температуры охлаждения выделившаяся влага может быть в виде жидкой фазы — конденсата или в виде твердой фазы — льда.

Изменение влагосодержания воздуха в процессе охлаждения в расчете на один градус понижения температуры воздуха в случае вымораживания влаги является весьма незначительным, т. е. осушка воздуха вымораживанием является более теплоемким процессом по сравнению со способом конденсации. Вымораживание применяется в тех случаях, когда необходима глубокая осушка воздуха.

Осушка воздуха охлаждением обладает существенными преимуществами перед другими способами и поэтому находит широкое применение в системах кондиционирования кабин космических летательных аппаратов.

Основными преимуществами таких систем следует считать относительную простоту и надежность работы осушительного устройства, независимость веса и объема от продолжительности использования, обеспечение теп-лосъема из конденсируемого объема в процессе сушки, удаление из осушаемого воздуха одновременно с водяными парами части растворимых или легко замерзающих вредных примесей.

К недостаткам указанных систем относятся необходимость в определенных источниках холода для понижения температуры воздуха до требуемой величины и качественно новой организации разделения газожидкостной смеси в условиях реального космического полета.

В наземных установках сконденсированная жидкая фаза за счет разности в удельных весах газа и жидкости под действием собственного веса стекает в специальные емкости.

В условиях реального космического полета (динамической невесомости) процесс отделения жидкой фазы от газообразной требует принципиально нового технологического и конструктивного решения. Технологические процессы осушки воздуха (понижение температуры, конденсация влаги, влагоотделе-ние) можно совместить в одном аппарате, осуществляя все процессы одновременно, или использовать ряд аппаратов, последовательно выполняющих функцию понижения температуры, конденсации влаги при необходимости коагуляции — укрупнения капель жидкости и влагоотделения.

На рис. 8 представлена принципиальная схема влагоотделителя английской фирмы Нормалэр, применяющаяся в системе кондиционирования воздуха герметичной кабины самолета.

В сепараторе циклонного типа (рис. 9) влажный воздух поступает через тангенциально расположенный патрубок. Возникающие центробежные силы обеспечивают перемещение капелек жидкости к стенкам кожуха. Воздух по спиральной траектории в кольцевом зазоре между кожухами выходит из сепаратора через штуцер. Влага удаляется через сливное отверстие.

В центробежном сепараторе (рис. 10) с осевым входом влажный воздух закручивается в винтовом аппарате, влага стекает по стенкам и выводится через штуцер. Осушенный воздух отводится через патрубок.

Влагоотделители могут быть с отбойными конусами с центробежным эффектом, создаваемым лопатками специальной конструкции.

Существенным недостатком рассмотренных схем разделения жидкой и газообразной фаз является наличие вращающихся узлов и деталей, требующих периодической замены их, проведения профилактических работ, а также дополнительного расходования энергии.

Наиболее целесообразно отделять жидкую фазу от газообразной способом, основанным на применении гидрофильных и гидрофобных капиллярно-пористых элементов.

Следует иметь в виду, что конденсационные осушители одновременно с осушкой воздуха обеспечивают его охлаждение, т. е. осуществляют регулирование температуры и влажности воздуха в гермокабине.

На советских космических кораблях «Восток» и «Восход» используется холодильносушильный аппарат (ХСА), выполняющий функции поддержания температуры и влажности воздуха в гермокабине (рис.11).

Принцип работы холодильно-сушильного аппарата заключается в непрерывном охлаждении и конденсации влаги из осушаемого воздуха и отводе капель жидкости путем применения капиллярно-пористых фитилей, вплотную примыкающих к холодной поверхности радиатора. Отвод конденсируемой влаги в такой системе труднорегулируем.

Воздух из кабины с температурой 25° С и с абсолютным содержанием влаги до 17,5 г на 1 кг засасывается вентилятором 2 через всасывающий воздухопровод и нагнетается в межтрубное пространство теплообменника. По трубкам 4 циркулирует жидкий хладагент при температуре +5° С, нагнетаемый через трубопровод подачи 3 из контура радиационного теплообменника. Между трубками расположены гигроскопические фитили 5, которые соприкасаются с гигроскопическим пори-

 

 

 

 

 

Рис. 11. Принципиальная схема холодильно-сушильного теплообменника

1    — вход воздушного потока,

2    — вентилятор,

3    — трубопровод подачи хладагента с радиационного

теплообменника,

4    — трубки теплообменника,

5    — фитили,

6    — трубопровод выхода хладагента,

7    — фитильный сборник сконденсированной влаги,

8    — вентиль откачки конденсата,

9    — выходной воздухопровод,

10 — выход воздушного потока.

 

 

стым материалом, заполняющим емкость 7 (сборник конденсата). Пары воды из воздуха, циркулирующего в межтрубном пространстве, конденсируются на трубках, а затем конденсат по фитилям поступает в сборник. Через выходной трубопровод жидкий хладагент при температуре +7 -  +10° С следует в контур радиационного теплообменника, где охлаждается и снова поступает по трубопроводу подачи 3. Через вентиль 8 конденсат откачивается в систему регенерации воды.

Теплообменники-разделители также могут быть построены на гидрофильных и гидро

фобных пористых элементах, в которых скорость удаления жидкой фазы определяется фильтрующей способностью этих элементов и перепадом давления между газожидкостной и жидкой фазами.

Такого типа теплообменники-разделители находят все более широкое применение в отдельных аппаратах систем обеспечения жизнедеятельности и в системах кондиционирования газовой среды.

Систематизация основных способов осушки воздуха

В системах кондиционирования воздуха по температуре и влажности удаление влаги и снижение температуры — явления, связанные весьма тесно. Основным принципом, лежащим в основе способов осушки воздуха, является выпадение конденсата атмосферной влаги на охлажденных по сравнению с воздухом поверхностях теплообменников. Характерной особенностью осушки воздуха является неминуемый фазовый переход от газообразного состояния в жидкое, что в условиях отсутствия силы тяжести значительно усложняет процесс массоотвода воды и последующей ее транспортировки к аппаратам системы. Интенсификация этого процесса использованием капиллярно-пористых элементов или каких-либо других гигроскопических материалов считается эффективным средством и находит практическое применение в реально действующих аппаратах.

В систематизированном виде по временном и физико-химическим принципам организации технологических процессов способы осушки воздуха и отделения жидкой фазы от газообразной представлены на рис. 12 и 13.

В настоящее время практическое применение находят в основном регенеративные способы осушки воздуха. Значительный интерес по своим возможностям и многоцелевому назначению представляют электрохимические способы. Электролиз на электролите Р2O5, H2SO4, а также с использованием серебрянопалладиевого катода при одновременном поглощении водяных паров обеспечивает получение соответствующего количества кислорода и водорода. Совмещение двух процессов (осушка воздуха, регенерация О2) в одном аппарате приводит к значительному упрощению общего технологического цикла, связанного с разложением воды на кислород и водород и т. д.

 

Скачать реферат: Osushka-vozduha.rar

Пароль на архив: privetstudent.com

 

 

Категория: Рефераты / Физика

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.