Расчет электропривода грузового лифта

0

Электроэнергетический факультет

Кафедра автоматизированного электропривода и электромеханики

КУРСОВОЙ ПРОЕКТ

по дисциплине «Теория электропривода»

Расчет электропривода грузового лифта

Пояснительная записка

Содержание

Введение…………………………………………………………...………………

1 Расчет электропривода грузового лифта………………………………………

1.1 Кинематическая схема рабочей машины, ее описание и технические данные………………………………………………………………………………...…

1.2 Расчет статических моментов…………………………………………...……

1.3 Расчет нагрузочной диаграммы………………………………………………

1.4 Предварительный расчет мощности электродвигателя и его выбор………

1.5 Расчет приведенных статических моментов……………………………...…

1.6 Построение нагрузочной диаграммы электродвигателя……………………

1.7 Предварительная проверка электропривода по нагреву и производительности…………………………………………………………………….

1.8 Выбор системы электропривода и его структурная схема…………………

1.9 Расчет и построение естественных механической и электромеханической характеристик выбранного двигателя…………………………………………………

1.9.1 Расчет и построение естественных характеристик двигателя постоянного тока независимого возбуждения…………………………………..……

1.10 Расчет и построение искусственных характеристик………………………

1.10.1 Расчет и построение пусковой диаграммы двигателя с линейной механической характеристики графическим способом……………………….……..

1.10.2 Построение тормозных характеристик……………………………...……

1.11 Расчет переходных режимов электропривода……………………………..

1.11.1 Расчет механических переходных процессов электропривода при абсолютно жестких механических связях………………………………………

1.11.2 Расчет механического переходного процесса электропривода при наличии упругой механической связи……………………………………………...…

1.11.3 Расчет электромеханического переходного процесса электропривода при абсолютно жестких механических связях……………………………………..…

1.12 Расчет и построение уточненной нагрузочной диаграммы двигателя

1.13 Проверка электропривода на заданную производительность, по нагреву и перегрузочной способности электродвигателя…………………………………..…

1.14 Принципиальная схема электрической части электропривода

Заключение ………………………………………………………………..………

Список литературы……………………………………………………………..…

 

Введение

Способ получения энергии, необходимой для выполнения механической работы в производственных процессах, на всех этапах истории человеческого общества оказывал на развитие производительных сил решающее влияние. Создание новых, более совершенных двигателей, переход к новым видам приводов рабочих машин явились крупными историческими вехами на пути развития машинного производства. Замена двигателей, реализующих энергию падающей вод, паровой машины, послужила мощным толчком к развитию производства в прошлом веке – веке пара. Наш 20 в. Получил название века электричества в первую очередь потому, что основным источником механической энергии стал более совершенный электрический двигатель и основным видом привода рабочих машин является электрический привод.

Индивидуальный автоматизированный электропривод в настоящее время получил широкое применение во всех сферах жизни и деятельности общества – от сферы промышленного производства до сферы быта. Благодаря рассмотренным выше особенностям совершенствование технических показателей электроприводов во всех областях применения является основой технического прогресса.

Широта применения определяет исключительно большой диапазон мощностей электроприводов (от долей ватта до десятков тысяч киловатт) и значительное разнообразие из исполнения. Уникальные по производительности промышленные установки – прокатные станы в металлургической промышленности, шахтные подъемные машины и экскаваторы в горнодобывающей промышленности, мощные строительные и монтажные краны, протяженные высокоскоростные конвейерные установки, мощные металлорежущие станки и многие другие – оборудуются электрическими приводами, мощность которых составляет сотни и тысячи киловатт. Преобразовательные устройства таких электроприводов представляет собой генераторы постоянного тока, тиристорные и транзисторные преобразователи с выходом на постоянном токе, тиристорные преобразователи частоты соответствующей мощности. Они обеспечивают широкие возможности регулирования потока электрической энергии, поступающей в двигатель, в целях управления движением электропривода и технологическим процессом приводимого в движение механизма. Их управляющие устройства, как правило, построены на основе использования микроэлектроники и во многих случаях включают в себя управляющие вычислительные машины.

1 Расчет электропривода грузового лифта

1.1 Кинематическая схема рабочей машины, ее описание и технические данные

1 – электродвигатель,

2 – тормозной шкив,

3 –редуктор,

4 – канатоведущий шкив,

5 – противовес,

6 – грузовая клеть,

7 – нижняя площадка,

8 – верхняя площадка.

Рисунок 1 – Кинематическая схема лифта

Грузовой лифт осуществляет подъем груза, помещенного в грузовую клеть, с нижней площадки на верхнюю. Вниз клеть опускается пустая.

В цикл работы грузового лифта входит время загрузки, время подъема клети со скоростью Vр, время разгрузки и время спуска клети со скоростью Vв</sub>> Vр

Таблица 1 – Исходные данные

Обозначение

Наименование показателя

Размерность

mk

Масса клети

т

1,5

mг

Грузоподъемность

т

0,75

mn

Масса противовеса

т

1,8

D

Диаметр канатоведущего шкива

м

1,0

dц

Диаметр цапфы

мм

60

ηn

Коэфф., трения скольжения в подшипниках

-

0,06

Ck

Линейная жесткость механизма

МН/м

25

H

Высота подъема клети

м

10

Vp

Скорость движения с грузом

м/с

1,2

Vв

Скорость движения без груза

м/с

2,0

a

Допустимое ускорение

м/с2

2,0

z

Число циклов в час

-

60

tp

Суммарное время работы, не более

с

19

Требуется рассчитать электропривод грузового лифта, по заданным параметрам механизма. Выбрать двигатель, построить характеристики двигателя, выполнить тепловой расчет электропривода.

По заданию необходимо при расчете механизма брать двигатель постоянного тока с независимым возбуждением.

1.2 Расчет статических моментов

Момент статического сопротивления грузового лифта складывается из момента силы тяжести и момента сил трения в подшипниках канатоведущего шкива и трения грузовой клети и противовеса в направляющих шахты.

Момент силы тяжести определяется по формуле:

где D – диаметр канатоведущего шкива, м;

mрез – результирующая масса, которая поднимается или спускается электроприводом лифта, кг.

Результирующая масса определяется соотношение масс груза, клети и противовеса и может быть рассчитана по формуле:

mрез= mk+ mг- mn=1500+750-1800=450 кг

Момент силы трения в подшипниках канатоведущего шкива можно определить по выражению:

Момент силы трения грузовой клети и противовеса в направляющих шахты математически точно определить практически невозможно, так как величина этого сопротивления зависит от многих факторов, не поддающихся учету. Поэтому величина момента сил трения клети и противовеса в направляющих учитывается величиной кпд механизма, которая определена заданием на проектирование.

Таким образом, полный момент статического сопротивления грузового лифта определяется по выражению:

,

если двигатель работает в двигательном режиме, и по выражению:

,

если двигатель работает тормозном (генераторном) режиме.

1.3 Расчет нагрузочной диаграммы рабочей машины

Для того, чтобы ориентировочно оценить требуемую для данного механизма мощность двигателя, необходимо определить тем или иным способом мощность или момент производственного механизма на разных участках его работы и скорости движения рабочего органа механизма на этих участках. Другими словами, необходимо построить нагрузочную диаграмму производственного механизма.

Механизм, работающий в повторно-кратковременном режиме, в каждом цикле совершает прямой ход с полной нагрузкой и обратный ход на холостом ходу или с малой нагрузкой. На рисунке 2.1 приведена нагрузочная диаграмма механизма с ограничением допустимого ускорения рабочего органа механизма.

Рисунок 2 – Нагрузочная диаграмма механизма с ограничением ускорения

На нагрузочной диаграмме изображены:

- , – статические моменты при прямом и обратном ходах;

- , – динамические моменты при прямом и обратном ходах;

- , – пусковые моменты при прямом и обратном ходах;

- , – тормозные моменты при прямом и обратном ходах;

- , – скорости прямого и обратного ходов;

- , , – времена пуска, торможения и установившегося движения при прямом ходе;

- , , – времена пуска, торможения и установившегося движения при обратном ходе.

По заданным скоростям Vc1, Vc2, длине перемещения L, и допустимому ускорению а, рассчитываются tп1, tп2, tт1, tт2, tу1, tу2.

Время пуска и торможения:

Путь, проходимый рабочим органом машины за время пуска (торможения):

Путь, проходимый рабочим органом машины за время установившегося движения:

Время установившегося движения:

Время работы механизма при прямом и обратном ходах:

Динамические моменты рабочей машины

где D – диаметр вращающегося элемента рабочей машины, преобразующего вращательное движение в поступательное, м,

Jрм1, Jрм1 – моменты инерции рабочей машины при прямом и обратном ходах.

Полный момент рабочего органа механизма, в динамическом режиме (пуск, торможение) при прямом и обратном ходах, определяются по выражениям:

1.4 Предварительный расчет мощности электродвигателя и его выбор

Таким образом, в результате расчетов по вышеприведенным формулам координаты нагрузочных диаграммы получают конкретные значения, позволяющие рассчитать среднеквадратическое значение момента за цикл работы.

Для нагрузочной диаграммы, с ограничением ускорения:

Фактическая относительна продолжительность включения определяется из выражений:

где tц – длительность цикла работы, с,

Z – число включений в час.

Имея значение среднеквадратичного момента производственного механизма за цикл, ориентировочную требуемую мощность двигателя можно определить по соотношению:

где Vсн – скорость рабочего органа механизма Vc2,

ПВН – номинальное значение продолжительности включения, ближайшее к фактическому ПВН,

К – коэффициент, учитывающий величину и длительность динамических нагрузок электропривода, а также потери в механических придачах и в электродвигателе. Для нашего случая К = 1.2.

Теперь выбирается двигатель, подходящий по условиям эксплуатации.

Параметры двигателя:

Краново-металлургический двигатель постоянного тока,UН=220 В, ПВ=25%.

Таблица 2 – Данные двигателя

Тип

Параллельное возбуждение

Рн, кВт

nн, об/мин

Iн, А

Rя+Rдп, Ом

Rов, Ом

Iвн, А

ДП-42

21.0

660

110

0.1155

65

2.4

Определяем передаточное число редуктора:

где wН – номинальная скорость выбранного двигателя.

Редуктор можно выбирать по справочнику, учитывая определенное передаточное число, номинальную мощность и скорость двигателя, а так же режим работы механизма, для которого этот редуктор предназначен.

Такой выбор редуктора является весьма примитивным и годным разве что для механизмов типа лебедки. Реально редуктор проектируется для конкретного рабочего механизма и является его неотъемлемой частью, ограниченно связанной и с электродвигателем и с рабочим органом. Поэтому, если выбор редуктора не ограничен особо в задании на проектирование.

1.5 Расчет приведенных статических моментов, моментов инерции и коэффициента жесткости системы электрический двигатель – рабочая машина

Для того чтобы можно было рассчитать статические и динамические характеристики электропривода, необходимо все статические и динамические нагрузки привести к валу двигателя. При этом должны учитываться не только передаточное число редуктора, но и потери в редукторе, а так же постоянные потери в двигателе.

Потери холостого хода двигателя (постоянные потери) можно определить, приняв их равными переменным потерям в номинальном режиме работы:

где ηн – номинальный кпд двигателя.

Если величина ηн в каталоге не дается, ее можно определить по выражению:

Момент постоянных потерь двигателя

Таким образом, приведенные к валу двигателя статические моменты системы электродвигатель – рабочая машина на каждом участке работы рассчитываются по формулам:

если двигатель в установившемся режиме работает в двигательном режиме.

Суммарный приведенный к валу электродвигателя момент инерции системы электродвигатель – рабочая машина состоит как бы из двух составляющих:

а) момент инерции ротора (якоря) двигателя и связанных с ним элементов электропривода, вращающихся с той же скоростью, что и двигатель,

б) приведенный к валу двигателя суммарный момент инерции движущихся исполнительных органов рабочей машины и связанных с ними движущихся масс, задействованных в технологическом процессе данного рабочего механизма.

Таким образом, суммарный приведенный к валу двигателя момент инерции, при прямом и обратных ходах определяется по выражениям:

где Jд – момент инерции якоря (ротора) двигателя,

а – коэффициент учитывающий наличие на быстроходном валу других элементов электропривода, таких как муфт, тормозного шкива и т.п.

Для механизма, представленного в задании на курсовое проектирование, коэффициент а = 1,5.

Jпррм1, Jпррм2 – приведенный к валу двигателя суммарный момент инерции движущихся исполнительных органов, и, связанных с ними масс рабочей машины при прямом и обратном ходах:

Для того, чтобы получить представление о влиянии упругих механических связей на переходные процессы системы электродвигатель – рабочая машина в задании представлена крутильная жесткость Ck.

Приведенную к валу двигателя жесткость упругой механической связи Спр определяют через значение крутильной жесткости:

1.6 Построение нагрузочной диаграммы электродвигателя

Для построения нагрузочной диаграммы электродвигателя необходимо определить требуемые для пуска и торможения значения динамических моментов, а так же значения пусковых и тормозных моментов двигателя.

Для нашей нагрузочной диаграммы механизма с ограничением ускорения значения этих моментов определяется по следующим выражениям.

Пусковые и тормозные моменты для случая, когда двигатель в установившемся режиме работает в двигательном режиме, определяется по формуле:

Для построения рабочей характеристики потребуется значение скорости wc1. Скорость wc2 равна номинальной скорости электродвигателя.

Рисунок 3 – Приближенная нагрузочная диаграмма электродвигателя

1.7 Предварительная проверка электродвигателя по нагреву и производительности

Предварительная проверка двигателя по нагреву может быть проведена по нагрузочной диаграмме двигателя методом эквивалентного момента. В данном случае этот метод не дает значительной погрешности, т.к. и двигатель постоянного тока, и двигатель переменного тока будут работать в проектируемом электроприводе на линейной части механических характеристик, что дает основание с большой долей вероятности считать момент двигателя пропорциональным току двигателя.

Эквивалентный момент определяется по выражению:

Допустимый момент предварительно выбранного двигателя, работающего при ПВф:

Условие правильности предварительного выбора двигателя:

,

причем

.

Для нашего случая

,

что удовлетворяет условиям выбора электродвигателя.

1.8 Выбор системы электропривода и его структурная схема

Проектируемый электропривод совместно с заданным производственным механизмом образует единую электромеханическую систему. Электрическая часть этой системы состоит из элктромеханического преобразователя энергии постоянного или переменного тока и системы управления (энергетической и информационной). Механическая часть электромеханической системы включает в себя все связанные движущиеся массы привода и механизма.

В качестве основного представления механической части принимаем расчетную механическую систему (рисунок 4), частым случаем которой при пренебрежении упругостью механических связей является жесткое приведенное механическое звено.

Uя Uв

Rдоб

J1

w1 w2

c12

J2

Рисунок 4 – Двухмассовая расчетная механическая система

Здесь J1 и J2 – приведенные к валу двигателя моменты инерции двух масс электропривода, связанных упругой связью,

w1, w2 – скорости вращения этих масс,

с12 – жесткость упругой механической связи.

В результате анализа электромеханических свойств различных двигателей установлено, что при определенных условиях механические характеристики этих двигателей описываются идентичными уравнениями. Поэтому при этих условия аналогичны и основные электромеханические свойства двигателей, что позволяет описывать динамику электромеханических систем одними и тем же уравнениями.

Вышесказанное справедливо для двигателей с независимым возбуждением, двигателей с последовательным возбуждением и смешанным возбуждением при линеаризации их механических характеристик в окрестности точки статического равновесия и для асинхронного двигателя с фазным ротором при линеаризации рабочего участка его механической характеристики.

Таким образом, применив одни и те же обозначения для трех типов двигателей, получим систему дифференциальных уравнений, описывающих динамику линеаризованной электромеханической системы:

где Мс(1) и Мс(2) – части общей нагрузки электропривода, приложенные к первой и второй массам,

М12 – момент упругого взаимодействия между движущимися массами системы,

β – модуль статической жесткости механической характеристики,

Тэ – электромагнитная постоянная времени электромеханического преобразователя.

Структурная схема, соответствующая системе уравнений представлена на рисунке 5.

Рисунок 5 - Структурная схема электромеханической системы

Параметры w0, Тэ, β определяются для каждого типа двигателя по собственным выражениям.

Система дифференциальных уравнению и структурная схема правильно отражает основные закономерности, свойственные реальным нелинейным электромеханическим системам в режимах допустимых отклонений от статического состояния.

1.9 Расчет и построение естественных механической и электромеханической характеристик выбранного электродвигателя

Уравнение естественных электромеханической и механической характеристик данного двигателя имеют вид:

где U – напряжение на якоре двигателя,

I – ток якоря двигателя,

M – момент, развиваемый двигателем,

RяΣ – суммарное сопротивление якорной цепи двигателя:

где Rя – сопротивление обмотки якоря,

Rдп – сопротивление обмотки дополнительных полюсов,

Rко – сопротивление компенсационной обмотки,

Ф – магнитный поток двигателя.

К – конструктивный коэффициент.

Из выражений, приведенных выше видно, что характеристики двигателя линейна при условии Ф = const и могут быть построены по двум точкам. Такими точками выбираются точка идеального холостого хода и точка номинального режима. Остальные величины определяются:

Рисунок 6 - Естественная характеристика двигателя

1.10 Расчет и построение искусственных характеристик электродвигателя

К искусственным характеристикам двигателя в данном курсовом проекте относятся реостатная характеристика для получения пониженной скорости при работе двигателя с полной нагрузкой, а так же реостатные характеристики обеспечивающие заданные условия пуска и торможения.

1.10.1 Расчет и построение пусковой диаграммы двигателя с линейной механической характеристики графическим способом

Построение начинается с построения естественной механической характеристики. Далее требуется рассчитать максимальный момент развиваемый двигателем.

где λ – перегрузочная способность двигателя.

Для построения рабочей характеристики используем значения w1 и Мс1, точку идеального холостого хода.

При выходе на естественную характеристику имеется бросок тока, который выходит за рамки М1 и М2. Для запуска с рабочей характеристики необходимо оставить текущую схему пуска. Так как при пуске на рабочую и естественную характеристику ступень требуется одна и нет надобности в дополнительных ступенях.

М1 и М2 принимаем равными:

М1 =600 Н м

М2 =264 Н м

Рисунок 7 - Пусковая характеристика двигателя

Согласно рисунку пусковые сопротивления рассчитываются по следующим формулам:

Последовательность пуска отображена на рисунке в виде знаков.

1.10.2 Расчет и построение рабочей характеристики двигателя с линейной механической характеристики.

Рабочая характеристика двигателя постоянного тока с независимым возбуждением строится по двум точкам: точка идеального холостого хода и точка рабочего режима, координаты которых определены ранее:

Рисунок 8 - Рабочая характеристика двигателя

В зависимости от того как располагаются рабочая характеристика относительно пусковой диаграммы двигателя, необходима та или иная коррекция либо пусковой диаграммы, либо траектории пуска двигателя под нагрузкой Мс1 до скорости wc1.

Рисунок 9 - Рабочая характеристика двигателя

1.10.3 Построение тормозных характеристик

Техническим заданием определено максимально допустимое, в переходных процессах, ускорение, то исходным для построения тормозных характеристик являются величины средних, постоянных по величине, тормозных моментов, определенных в пункте 6. Так как, при их определении ускорение считалось постоянным, тормозные моменты при торможении с различной нагрузкой и с разных начальных скоростей могут значительно отличаться друг от друга, причем в большую, либо меньшую сторону. Теоретически возможно даже их равенство:

Поэтому должны быть построены обе тормозные характеристики.

Рисунок должен учитывать, что реостатные характеристики торможения Противовключением должны быть построены таким образом, чтобы площадь между характеристиками и осями координат примерно равнялись в одном случае:

а в другом случае:

Зачастую величины тормозных моментов бывают намного меньше пикового момента М1, при котором определяются пусковые сопротивления. В этом случае необходимо построить естественную характеристику двигателя для обратного направления вращения и определить величины тормозных сопротивлений по выражениям согласно рисунку:


1.11 Расчет переходных режимов электропривода

В данном курсовом проекте должны быть рассчитаны переходные процессы пуска и торможении с различной нагрузкой. В результате должны быть получены зависимости момента, скорости и угла поворота от времени.

Результаты расчета переходных процессов будут использованы при построении нагрузочных диаграмм электропривода и проверке двигателя по нагреву, перегрузочной способности и заданной производительности.

1.11.1 Расчет механических переходных процессов электропривода при абсолютно жестких механических связях

При представлении механической части электропривода жестким механическим звеном и пренебрежении электромагнитной инерцией, электропривод с линейной механической характеристикой, представляет собой апериодическое звено, с постоянной времени Тм.

Уравнения переходного процесса для этого случая записываются так:

где Мс – момент двигателя в установившемся режиме,

wc - скорость двигателя в установившемся режиме,

Мнач – момент в начале переходного процесса,

Wнач – скорость двигателя в начале переходного процесса.

Тм – электромеханическая постоянна времени.

Электромеханическая постоянная времени считается по следующей формуле, для каждой ступени:

Для выхода на естественную характеристику считаем:

Для выхода на рабочую характеристику:

Для тормозных характеристик:

Время работы на характеристике, при переходных процессах определяется по следующей формуле:

Для выхода на естественную характеристику считаем:

Для выхода на рабочую характеристику:

Для тормозных характеристик:

Время переходных процессов при пуске и торможении определяется, как сумм времен на каждой ступени.

Для выхода на естественную характеристику:

Для выхода на рабочую характеристику:

Время работы на естественной характеристике теоретически равно бесконечности, соответственно его считали как (3-4) Тm.

Таким образом, были получены все данные для расчета переходных процессов.


1.11.2 Расчет механического переходного процесса электропривода при наличии упругой механической связи

Для расчета данного переходного процесса необходимо знать ускорение и частоту свободных колебаний системы.

где ,

.

Решение уравнения имеет вид:

В абсолютно жесткой системе нагрузка передач в процессе пуска равна:

За счет упругих колебаний нагрузка возрастает и определяется по выражению:

Рисунок 12 - Переходной процесс электропривода при наличии упругой механической связи

Динамический коэффициент превышения нагрузки определяется, как:

Рисунок 13 - Упругие колебания нагрузки

1.11.3 Расчет электромеханического переходного процесса электропривода при абсолютно жестких механических связях

Для расчета данного переходного процесса необходимо, что бы были рассчитаны следующие величины:

Если отношение постоянных времени меньше четырех то используем следующие формулы для вычисления:

При этом характеристики буду считаться по следующим формулам:

Рисунок 14 - Переходной процесс W(t)

Рисунок 15 - Переходной процесс М(t)

1.12 Расчет и построение уточненной нагрузочной диаграммы электродвигателя

Уточненная нагрузочная диаграмма двигателя должна быть построена с учетом пусковых и тормозных режимов работы двигателя в цикле.

Одновременно с расчетом нагрузочной диаграммы двигателя необходимо рассчитать величину среднеквадратичного момента на каждом участке переходного процесса.

Среднеквадратичный момент характеризует нагрев двигателя в том случае, когда двигатели работают на линейной части своих характеристик, где момент пропорционален току.

Для определения среднеквадратичных значений момента или тока реальная кривая переходного процесса аппроксимируется прямолинейными участками.

Значения среднеквадратичных моментов на каждом участке аппроксимации определим по выражению:

где Мначi – начальное значение момента на рассматриваемом участке,

Мконi – конечное значение момента на рассматриваемом участке.

Для нашей нагрузочной диаграммы необходимо определить шесть среднеквадратичных момента.

Для движения на естественной характеристике:

Для движения на рабочей характеристике:


1.13 Проверка электропривода на заданную производительность, по нагреву и перегрузочной способности

Проверка на заданную производительность механизма заключается в том, чтобы проверить, укладывается ли рассчитанное время работы в заданное техническим заданием tp.

где tрр – расчетное время работы электропривода,

tп1 и tп2 – времена первого и второго пусков,

tт1 и tт2 – времена первого и второго торможений,

tу1 и tу2 – времена установившихся режимов при работе с большей и малой нагрузкой,

tп2, tп1, tт2, tт12 – берутся из расчета переходных процессов,

Проверку выбранного двигателя по нагреву в данном курсовом проекте следует выполнить методом эквивалентного момента.

Допустимый момент двигателя в повторно – кратковременном режиме определяют по выражению:

1.14 Принципиальная электрическая схема силовой части электропривода

Силовая часть представлена в графической части.

Описание силовой схемы электродвигателя

Управление электроприводом заключается, в – первых, в подключении обмоток двигателя к питающей сети при пуске и отключение при остановке и во – вторых, постепенного переключения релейно–контакторной аппаратурой ступеней пускового резистора по мере разгона двигателя.

Выведение ступеней пускового резистора в цепи ротора, возможно несколькими способами: в функции скорости, в функции тока и в функции времени. В данном проекте пуск двигателя осуществляется в функции времени.


Заключение

В данном курсовом был рассчитан электропривод тележки мостового крана. Выбранный двигатель не совсем удовлетворяет условиям, так как момент развиваемы двигателем больше, чем требуется для данного механизма, следовательно, необходимо выбрать двигатель с меньшим моментом. Так как перечень предлагаемых двигателей не полный, то мы оставляем данный двигатель с поправкой.

Так же для использования рабочей характеристики для пуска в обоих направлениях, мы допустили несколько больший скачек тока, при переходе на естественную характеристику. Но это допустимо, так как изменение схемы пуска привело бы к необходимости введения дополнительного сопротивления.

Список литературы

1.Ключев, В.И. Теория электропривода / В.И. Ключев. – М.: Энергоатомиздат, 1998.- 704с.

2.Чиликин, М.Г. Общий курс электропривода / М.Г. Чиликин. – М.: Энергоатомиздат, 1981. -576 с.

3.Вешеневский, С.Н. Характеристики двигателей в электроприводе / С.Н. Вешеневский. – М.: Энергия, 1977. – 432 с.

4.Андреев, В.П. Основы электропривода / В.П. Андреев, Ю.А. Сабинин. – Госэнергоиздат, 1963. – 772 с.

 

Скачать курсовую:llllle.docx

Категория: Курсовые / Курсовые электропривод и электромеханика

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.