Двигатели переменного тока

Если через свободно вращающуюся в магнитном поле катушку с проводами пропускать переменный ток, то вращающий момент не возникнет, так как ток постоянно изменяет направление. По такому принципу работает асинхронный короткозамкнутый двигатель, в котором три раздельные фазные обмотки статора создают вращающееся магнитное поле. Ротор состоит из медных проводников, расположенных по кругу параллельно его оси и закрепленных на концах кольцами для создания клетки. При пуске двигателя вращающееся магнитное поле наводит э. д. с. в клетке и, следовательно, появляется ток. Проводник ротора, по которому протекает ток в магнитном поле, создает вращающий момент для ротора. Частота вращения ротора немного меньше частоты вращения магнитного поля статора.

Частота вращения ротора двигателя зависит от э.д. с., наведенной в роторе, а последняя зависит от скольжения ротора относительно магнитного поля статора. С увеличением нагрузки частота вращения ротора уменьшается, вызывая увеличение индуцируемой э. д. с., следовательно, вращающий момент несколько увеличивается. Двигатель имеет практически постоянную частоту вращения ротора при всех изменениях нагрузки. При пуске двигателя начальный пусковой момент вращения в 2 раза больше номинального, а пусковой ток превышает номинальный в 6 раз. Пусковой ток можно уменьшить, если применить двухклеточную конструкцию ротора: две раздельные клетки одна над другой. В начальный момент вращения через внешнюю высокоомную клетку протекает почти весь ток ротора. Далее после разгона ротора двигателя больший ток будет протекать через внутреннюю низкоомную клетку.

Категория: Рефераты / Физика

 

Автоматизация судовых холодильных установок

Датчики, сигнализаторы и регуляторы давления

В соответствии с ГОСТ 19176—80 устройство, преобразующее информацию о состоянии объекта или внешней среды в сигнал установленного уровня, пригодный для дальнейшей обработки в системе управления, называется источником информации. Датчик является источником информации, выходной сигнал которого соответствует текущему значению контролируемого параметра объекта. Сигнализатор — это источник информации, выходной сигнал которого дискретно изменяется при достижении контролируемым параметром объекта заданных значений.

Для преобразования давления среды в перемещение стрелки, рычага или штока используется деформация или изгибающий момент упругих элементов. Такими элементами могут быть металлические и неметаллические мембраны, мембранные коробки и блоки, сильфоны, трубчатые пружины. Перемещение определенной точки их зависит от давления или разности давлений.

Применяемые в судовых холодильных установках устройства для преобразования давления или разности давлений делятся на манометры, датчики, сигнализаторы и регуляторы. В манометрах подвижная точка упругого элемента через систему кинематики соединяется со стрелкой, Если упругий элемент воздействует на движок реохорда, то получается датчик давления с электрическим выходным сигналом. В сигнализаторах давления упругий элемент через систему рычагов и пружин переключает электрические- контакты. Регуляторы давления усилие упругого элемента используют для перемещения затвора и соответствующего изменения расхода протекающей среды. Подробно принцип действия указанных приборов описан в книгах. Ниже приводятся технические характеристики и особенности работы иностранных приборов, широко применяемых на судах.

Категория: Рефераты / Производство

 

Двигатели постоянного тока

Если по витку провода, находящемуся в магнитном поле, пропустить ток, то в результате их взаимодействия возникнет сила, которая будет вращать виток. Аналогичный принцип используется в генераторах при вращении витка провода в магнитном поле для наведения э. д. с. в витке. Таким образом, электрическая машина с помощью магнитного поля вырабатывает ток или энергию движения, т. е. работает как генератор или как двигатель. Применение дополнительных витков провода и более сильного магнитного поля позволяет создать высокоэффективный двигатель. Добавочные полюса, устанавливаемые для уменьшения искрения, в направлении вращения имеют противоположную полярность по отношению к следующему полюсу. При вращении якорь работает как генератор, в результате чего создается э. д. с. в направлении обратном питающему, т. е. противо э. д. с. которая вызывает падение напряжения на двигателе. Эта противо э. д. с. регулирует потребляемую мощность, но она не возникает в момент пуска двигателя. Поэтому для уменьшения больших пусковых токов необходимо использовать цепи с пусковыми сопротивлениями. Работа нагруженного двигателя постоянного тока определяется падением напряжения на якоре, магнитным полем между полюсами и нагрузкой или моментом вращения.

Категория: Рефераты / Физика

 

Генераторы переменного тока

В витке проводов, вращающемся в магнитном поле, наводится ток. Напряжение снимается с двух контактных колец, изолированных от вала, и через графитовые щетки поступает во внешнюю цепь. Такой ток будет переменным по направлению и по значению. Для увеличения генерируемого тока необходимо использовать дополнительные комплекты полюсов.

Магнитное поле создается магнитами, причем соседние полюса имеют противоположную полярность. Обмотки возбуждения полюсов соединяют последовательно и подключают к выходу генератора или к внешнему источнику. Использование отдельных витков необходимо для получения на выходе генератора нескольких э. д. с. Три выхода со сдвигом фаз на 120° позволяют получить три фазные э. д. с. График э. д. с. трехфазного генератора показан на рис. 14.5. Трехфазная электрическая цепь обладает большим к. п. д. по сравнению с однофазной. Каждая фаза может быть использована как в отдельности, так и вместе с другими. Существуют два способа соединения отдельных фаз источника: соединение по схеме «треугольник» и по схеме «звезда» (рис. 14.6).

Категория: Рефераты / Физика

 

Режимы работы судовой холодильной установки

Температура охлаждаемых объектов определяется соотношением между тепловой нагрузкой и холодо-производительностью судовой установки. При равенстве их устанавливается стационарный режим. Это показывает, что судовая холодильная установка обладает самовыравниванием, под которым понимается свойство объекта приходить в состояние равновесия после стабилизации входного воздействия при любом его значении: В объектах без самовыравнивания стабилизация входного воздействия при новом его значении не приводит к стабилизации одного или нескольких параметров. Например, насосно-циркуляционные системы охлаждения не обладают самовыравниванием в отношении поддержания уровня кипящей жидкости. Для нормальной работы их обязательно требуется регулирование уровня хладагента.

Обычно судовая холодильная установка подвержена различным воздействиям, которые можно разделить на внешние и внутренние. К внешним воздействиям относятся изменения параметров окружающей среды, параметров и расхода продукции, поступающей в грузовые помещения, морозильные аппараты, бункера предварительного охлаждения, охладители тузлука и рыбной муки. Изменение теплопритока от охлаждаемой или замораживаемой продукции, различные переключения охлаждаемых объектов, систем охлаждения, аппаратов и механизмов следует считать внутренними воздействиями. Часть внутренних воздействий может быть использована для управления работой холодильной установки.

Категория: Рефераты / Производство

 

Генераторы постоянного тока

Вращение витка провода в магнитном поле вызывает появление тока. При соединении витка с двумя полукольцами, действующими как коммутатор, ток выпрямляется. Коммутатор или коллектор выполняется в виде пластин, с которыми соприкасаются неподвижные щетки. Для увеличения силы тока на выходе генератора увеличивают число витков провода в обмотке и применяют добавочное магнитное поле. При работе генератора между токосъемными щетками и коллектором появляется искрение, которое можно устранить, расположив щетки таким образом, чтобы они замыкали только соседние пластины коллектора. Широко распространен другой способ улучшения условий коммутации с помощью дополнительных полюсов: полярность дополнительного полюса должна быть такой же, как главного полюса, в сторону которого следовало бы смещать щетки для улучшения условий коммутации. Магнитное поле между полюсами создается обмоткой возбуждения. Сердечник катушки, изготавливаемый из электротехнической стали, сохраняет некоторый остаточный магнетизм, из-за которого может создаться напряжение на нагрузке. Характеристики генераторов постоянного тока зависят от числа и способа подключения обмоток возбуждения.

В зависимости от способа возбуждения различают: генераторы параллельного возбуждения; генераторы последовательного возбуждения; генераторы смешанного возбуждения.

Категория: Рефераты / Физика

 

Судовая холодильная установка

Особенности работы судовых холодильных установок

Холодильные установки относятся к объектам непрерывного действия с отдельными устройствами дискретного действия. Выработка холода осуществляется при непрерывной циркуляции хладагента в замкнутом контуре. Переключение отдельных компрессоров, теплообменных аппаратов, насосов и потребителей холода осуществляется дискретно.

На современных судах применяют парокомпрессионные холодильные машины с поршневыми или винтовыми компрессорами. Хладагентами являются преимущественно R 22 или аммиак (R 717). В рабочих условиях основная задача управления холодильной машиной сводится к поддержанию соответствия между холодопроизводительностью и тепловой нагрузкой при условии сохранения высокой эффективности и обеспечения безопасности работы. Сложность решения ее зависит от разветвленности схемы холодильной машины и характера изменения тепловой нагрузки.

Способ использования вырабатываемого холода определяется назначением судна. На транспортных рефрижераторах основными потребителями холода являются грузовые помещения. Охлаждаемые грузовые помещения имеются также на всех других рефрижераторных судах. В зависимости от вида перевозимой продукции на одном судне в разных помещениях могут поддерживаться неодинаковые температуры.

Категория: Рефераты / Производство

 

Тушение пожаров на судах

Предотвращение пожаров на судне имеет большое значение для безопасности мореплавания. Борьба с пожаром на судне может быть обречена на неудачу, если к ней не готовиться заранее и не иметь в своем распоряжении различные противопожарные средства. Противопожарные средства, это оружие в борьбе с пожаром, были описаны выше. Теперь следует обратить внимание на готовность к борьбе с пожаром. При тушении любого пожара необходимо, чтобы в действиях команды были отработаны четыре основные операции: обнаружение, оповещение, ограничение и, наконец, ликвидация очага пожара. Пожар обнаруживается при срабатывании специальных средств, установленных на судне в различных местах, или просто по появлению запаха или дыма. Любой член команды судна, независимо от того, находится ли он на вахте или свободен от нее, должен хорошо понимать опасность пожара и знать его признаки. Некоторые помещения судна особенно опасны с точки зрения возникновения пожара, их нужно регулярно посещать и осматривать. При обнаружении пожара необходимо сообщить об этом как можно большему количеству людей на судне. Весьма важно, чтобы на ходовом мостике знали о местонахождении очага пожара и о его размерах. Небольшой пожар может быть быстро потушен одним человеком, его обнаружившим, но все равно при любом пожаре нужно привлечь внимание людей. Для этого можно и громко кричать «Пожар!», и громко стучать в переборки, и приводить в действие сигналы пожарной тревоги, если они имеются поблизости. Тот, кто обнаружит пожар, должен быстро принять решение, тушить ли пожар ему сразу самому или, выйдя из помещения, сообщить о пожаре остальным. Чем больше людей знают о пожаре, тем больше сил может быть сосредоточено на его тушение. Если у вас возникнет сомнение, тушить пожар самому или извещать остальных, то в этом случае целесообразно известить других о пожаре!

Категория: Рефераты / БЖД

 

Противопожарное оборудование

Содово-кислотные огнетушители. В корпус этого огнетушителя заливается раствор бикарбоната натрия. В крышке, навинченной на корпус, размещается боек, закрытый защитным колпачком. Под бойком помещается колба с серной кислотой (рис. 13.4). Если ударить по бойку, он разобьет колбу, и в результате кислота смешается с бикарбонатом натрия. В ходе возникающей химической реакции выделяется углекислый газ, повышается давление в корпусе огнетушителя и жидкость по внутренней трубке выбрасывается через сопло наружу. Этот огнетушитель предназначен для тушения пожаров класса А и располагается в жилых помещениях.

Химические и механические пенные огнетушители. В корпус химического пенного огнетушителя заливается раствор бикарбоната натрия, а во внутренний полиэтиленовый стакан (рис. 13.5, а) — раствор сульфата алюминия. Стакан закрыт крышкой, удерживаемой в этом положении штоком, при повороте которого крышка открывается. Если огнетушитель перевернуть вверх дном, обе жидкости смешиваются. В ходе возникшей реакции выделяется углекислый газ, под воздействием которого давление внутри корпуса повышается и из корпуса выбрасывается пена.

У механического пенного огнетушителя наружный корпус заполняется водой (рис. 13.5, б). Внутренний контейнер содержит колбы с углекислым газом и пенообразующей жидкостью. Над внутренним контейнером помещается ударный механизм с предохранителем. При нажатии на ударник обе колбы разбиваются, вода перемешивается с пенообразующей жидкостью, а углекислый газ оказывает давление на эту смесь, которая выбрасывается наружу через специальное сопло. Механическая пена образуется в сопле. В этом огнетушителе имеется внутренняя трубка, и поэтому при пользовании огнетушителем его не нужно переворачивать кверху дном.

Пенные огнетушители предназначены для тушения пожаров класса Б и располагаются вблизи хранилищ горючих жидких материалов.

Категория: Рефераты / БЖД

 

Организация противопожарной службы на судах

Пожар в море всегда представляет большую опасность. По числу причин гибели судов пожары стоят на первом месте. Почти все пожары возникают в результате халатности или неосторожности.

Горение происходит тогда, когда воспламеняются газы или пары, выделяющиеся из какого-либо вещества, т. е. когда горит именно газ, выделяющийся из вещества, а не само вещество. Температурой воспламенения вещества называется температура, при которой из вещества выделяется достаточное для продолжения горения количество газов.

Для горения при пожаре необходимо наличие трех факторов:

вещество, которое может гореть; источник воспламенения;

наличие кислорода или воздуха, содержащего кислород.

Если исключить одно или два из этих условий, то пожар можно потушить. При отсутствии хотя бы одного из этих условий пожар не может возникнуть.

В зависимости от характеристик горючего вещества пожары делятся на три класса.

К классу А относят пожары, при которых горят твердые материалы, такие как дерево, оборудование жилых помещений и т. п. Эти пожары тушат путем охлаждения твердых материалов, т. е. снижения их температуры ниже температуры воспламенения.

К классу Б относят пожары, при которых горят горюче-смазочные материалы и легковоспламеняющиеся жидкости. Такие пожары тушат, покрывая поверхность горящей жидкости негорючей массой, которая препятствует доступу кислорода к горящей поверхности.

К классу В относят пожары, при которых горит электрооборудование. Эти пожары тушат, покрывая горящую поверхность порошком, не проводящим ток. Порошок препятствует доступу кислорода к горящей поверхности.

Категория: Рефераты / БЖД