Аэродинамическая компенсация и весовая балансировка рулей

0

Уменьшение шарнирного момента руля, приводящее к снижению усилия на командные рычаги управления, осуществляется с помощью аэродинамической компенсации. К аэродинамическим средствам компенсации относятся следующие (рис. 63): осевая и роговая компенсация рулей; внутренняя или статическая компенсация рулей; сервокомпенсатор; пружинный сервокомпенсатор.

Сущность осевой компенсации заключается в том, что ось вращения руля помещается не вдоль носка, а несколько сзади (ближе к центру давления). В результате уменьшения расстояния аэродинамической силы Rp от оси вращения шарнирный момент уменьшается. Дальнейшее перемещение оси вращения в направлении от носка может привести к перемене знака шарнирного момента; это явление носит название перекомпенсации. Величина осевой компенсации определяется из соотношений:

 

 

где Sр.в,  Sр.н,  Sэл— соответственно площади руля высоты, руля направления и элерона;  Sк.в,  Sк.н,  Sк.э — площади компенсационной части указанных рулей.

 

 

 

У рулей, снабженных роговой компенсацией, концевая часть рулевой поверхности располагается перед осью руля и при повороте руля действующая на роговой компенсатор аэродинамическая сила создает момент, противоположный шарнирному моменту.

Внутренняя или статическая компенсация рулей чаще всего применяется на элеронах. Носок элерона соединяется с крылом воздухонепроницаемой гибкой диафрагмой. При отклонении элерона избыточное давление на диафрагму создает силу, способствующую его отклонению. Для компенсации такого типа характерно отсутствие перетекания воздуха из зоны повышенного давления в зону пониженного, а также устранение выхода носка руля при его отклонении за габариты крыла, что снижает лобовое сопротивление крыла. Внутренняя компенсация особенно полезна при полете на больших скоростях, однако осуществление ее в тонких профилях затруднено, так как она ограничивает углы отклонения элерона.

На рис. 63, г приведена схема сервокомпенсатора. Принцип действия его подобен действию триммера. В то же время между ними имеется существенное различие. Если триммер отклоняется только по воле пилота и отклонение руля не вызывает поворота триммера, то сервокомпенсатор при помощи четырехзвенного механизма отклоняется всегда в сторону, обратную отклонению основного руля.

Угол отклонения компенсатора увеличивается при увеличении отклонения руля.

Рассмотрим работу пружинного сервокомпенсатора. Качалка Управления, помещенная на оси вращения руля на подшипниках, соединяется с рулем через пружинную тягу с предварительно затянутыми пружинами (на схеме для простоты эта тяга показана виде одной пружины). Второй конец качалки жесткой тягой соединен с компенсатором. Если снять пружинную тягу, то поворот качалки управления не вызовет отклонения руля, а вызовет поворот компенсатора. В том случае, когда аэродинамические силы, действующие на руль, малы и усилия, потребные для отклонения руля, не превышают усилий предварительной затяжки пружин в пружинной тяге, то последнюю можно рассматривать как жесткий стержень неизменной длины, и поворот руля не вызывает отклонения компенсатора. При этом вследствие малой величины шарнирного момента не требуется применение аэродинамической компенсации.

Но как только аэродинамические силы, действующие на руль, возрастут, например вследствие увеличения угла отклонения руля или повышения скорости полета, и для отклонения руля потребуются усилия в тяге управления, превышающие усилия предварительной затяжки пружин в пружинной тяге, то при отклонении руля одновременно пружинная тяга будет удлиняться или укорачиваться. Это вызовет поворот качалки относительно руля и отклонение компенсатора в сторону, противоположную отклонению руля. Угол отклонения компенсатора пропорционален усилию, потребному для отклонения руля.

Таким образом, автоматически включившийся (отклонившийся) сервокомпенсатор снижает усилия, потребные для отклонения руля до вполне допустимых величин. Пружинный сервокомпенсатор широко применяется на рулях направления многомоторных самолетов.

Расчеты показывают, что у сверхзвуковых самолетов наблюдается чрезвычайно сильный рост усилий на рычагах управления. Широкий диапазон изменения этих усилий от малых на дозвуковых скоростях до очень больших на сверхзвуковых скоростях полета требует вводить переменную по числу М аэродинамическую компенсацию. Рассмотренные здесь виды компенсации не дают возможности получать приемлемые (по величине и знаку) усилия на рычагах управления на всех скоростях полета. Выходом из положения явилось применение системы управления, в которой усилия пилота усиливаются.

Однако и при наличии усилителей управления (бустеров) рули должны иметь аэродинамическую компенсацию: во-первых, для снижения потребных мощностей бустеров, во-вторых, для повышения безопасности аварийного перехода на ручное управление при выходе бустера из строя.

Весовая балансировка (весовая компенсация) рулей предназначена для предотвращения незатухающих упругих колебаний оперения и крыла, возникающих при полете на больших критических скоростях. Сущность весовой компенсации состоит в том, что центр тяжести руля совмещается при помощи дополнительных грузов, расположенных в передней части руля, с осью его вращения или сдвигается вперед относительно оси. В последнем случае весовая компенсация называется перебалансированной.

Весовая компенсация осуществляется с помощью чугунных болванок и различных агрегатов, устанавливаемых в носке руля. Возможна также установка компенсирующего груза на специальных кронштейнах, прикрепленных к рулю. Эти противовесы стремятся разместить внутри неподвижных частей оперения или внутри фюзеляжа.

 

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

 

Скачать реферат: Aerodinamicheskaya-kompensaciya.rar

Пароль на архив: privetstudent.com

Категория: Рефераты / Авиация

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.