Повышение экономичности ДВС

0

Повышение экономичности ДВС достигается совершенствованием их конструкции. Основой сокращения расхода топлива при этом является улучшение процесса его сгорания в цилиндрах.

В бензиновых карбюраторных ДВС нетяговые режимы (холостой ход и принудительный холостой ход) характеризуются высокой концентрацией в ОГ оксида углерода и углеводородов из-за неудовлетворительного перемешивания топлива с воздухом. Для устранения этого недостатка была разработана система холостого хода с дроссельным распылением топлива «Каскад». Положительным качеством этой системы является возможность ее использования для карбюраторов массового производства и способность сохранять практически неизменным состав поступающей в ДВС горючей смеси при изменении в широких пределах ее количества. При этом эта система позволяет снизить содержание СО в ОГ на режиме холостого хода на 1, 0—1, 5 %.

Что же касается режима принудительного холостого хода, то здесь необходимо иметь в виду следующее: в городских транспортных потоках продолжительность работы, например, грузовых автомобилей на этом режиме достигает 25 % времени нахождения их на линии, из них 18 % при закрытой дроссельной заслонке. При этом ДВС не совершает транспортной работы, однако потребляет 8—12 % топлива от общего расхода с выделением большого количества токсичных веществ с ОГ.

Существует несколько направлений реализации технических средств, позволяющих уменьшить выброс токсичных веществ с ОГ на режиме принудительного холостого хода.

Устройства для улучшения горения топлива. Эти устройства бывают двух видов. К первому относятся устройства для улучшения горения топлива (приоткрыватель дроссельной заслонки, демпфер ее закрытия при резком отпускании педали управления этой заслонкой, различного рода клапаны для подачи дополнительного количества горючей смеси или воздуха), что приводит к снижению выброса углеводородов на 30—40 %. Однако при этом существенно ухудшается эффект от торможения автомобиля двигателем, увеличивается на 2—4 % расход топлива, повышается на 7—10 % уровень выброса СО и возрастает износ тормозных накладок. Вследствие этого первое направление следует считать нерациональным. Поэтому в настоящее время распространение находят устройства второго вида (прекращается горение топлива на режиме принудительного холостого хода), к которым относятся экономайзеры принудительного холостого хода. Экономайзер принудительного холостого хода отключает подачу топлива воздушной смеси через систему холостого хода на режиме принудительного холостого хода, т. е. при торможении автомобиля двигателем, когда отпущена педаль управления дроссельными заслонками, а сцепление не выключено. При режиме принудительного холостого хода дроссельные заслонки закрыты, а частота вращения коленчатого вала превышает частоту вращения на холостом ходу. С помощью экономайзера перекрывается выход топливовоздушной эмульсии, что исключает выброс в атмосферу оксида углерода (СО) и одновременно уменьшает расход топлива. Например, использование такого экономайзера на автомобиле ЗИЛ-130 обеспечило реальную экономию топлива на 1, 5—2 % при снижении содержания СО в 2, 1 раза и углеводородов в 1, 35 раза во время замедления хода автомобиля.

Использование электронных средств регулирования состава горючей смеси. Применение электронных карбюраторных систем не требует существенных изменений всей подачи топлива, поскольку карбюратор используется как основной дозирующий орган, к которому добавочно устанавливается электронный регулятор, уточняющий состав горючей смеси. В результате применения электронного управления дроссельной заслонкой карбюратора расход топлива уменьшается вследствие прекращения его подачи на принудительном холостом ходу (на 1—4 %) и регулирования частоты вращения вала ДВС на холостом ходу (на 1—2 %), суммарное снижение расхода топлива в условиях эксплуатации составляет 8—10 %.

Применение электронных систем управления впрыском бензина дает снижение расхода топлива при одновременном уменьшении концентрации токсичных компонентов в ОГ. Здесь вместо карбюраторов применяются специальные распылители, где происходит распад струи жидкого топлива на мелкие однородные капли, истекающие через сопло вместе с воздухом со скоростью звука, и полученная таким образом топливовоздушная смесь поступает через соответствующий регулятор во впускной трубопровод и цилиндры ДВС. Специальные электронные датчики системы подают в микроЭВМ информацию о разряжении во впускном трубопроводе, степени и скорости открытия дроссельной заслонки, температурном режиме ДВС и температуре воздуха, поступающего в цилиндры, частоте вращения коленчатого вала ДВС и т. д. ЭВМ за доли секунды перерабатывает всю информацию и подает временной импульс к впрыскивающим форсункам, обеспечивающим подачу в цилиндр определенной дозы топлива. Преимуществом электронной системы впрыска является отсутствие отдельного привода от ДВС и то, что она может быть установлена на любом ДВС с минимальными переделками. Точное же дозирование топлива по отдельным цилиндрам на всех режимах работы ДВС с обеспечением необходимого согласования характеристик топливной системы ДВС и условий его эксплуатации помимо снижения токсичности ОГ уменьшает расход топлива на 8—9 %.

Обеднение топливовоздушной смеси. Снижению выбросов продуктов неполного сгорания топлива и повышению экономичности ДВС способствует также обеднение топливовоздушной смеси. Однако работа бензинового ДВС при коэффициенте избытка воздуха α> 1, 15 практически невозможна из-за возникновения пропусков воспламенения в отдельных цилиндрах. Полное сгорание бедных смесей даже при α> 1, 3 может быть обеспечено расслоением заряда, при котором воспламенение и начальная стадия процесса сгорания происходит в зоне обогащенной, а последующая осуществляется в зоне бедной смеси (форкамер-но-факельное зажигание). Это препятствует образованию оксидов азота, поскольку в первой стадии сгорания недостаточно кислорода, а во второй относительно низкая температура горения. При расслоении заряда содержание оксида углерода в выбросах не превышает 0, 2 %, и концентрация углеводородов в них также понижается из-за меньшего содержания топлива в бедной смеси основной камеры. Непосредственный впрыск топлива выводит на новый уровень технологию работы двигателей на бедных смесях. В этом случае в цилиндр подается только воздух, а топливо впрыскивается под высоким давлением непосредственно в камеру сгорания. Вокруг свечи зажигания формируется облако готовой к воспламенению горючей смеси, что позволяет поднять воздухо-топливное соотношение выше, чем в традиционных двигателях. Поскольку в камере сгорания формируется смесь неодинаковой плотности, то это явление называют «расслоением» заряда. На самом деле на режимах полной нагрузки происходит переход к формированию гомогенной смеси нормального состава, но даже с учетом этого достигается снижение СО2 более чем на 30 % при увеличении мощности на 10 %. Необходимо отметить, что непосредственный впрыск топлива дополняется системой управляемого вихря и специальной формой днища поршня, что усиливает эффект расслоения заряда. Для обеспечения требуемого уровня выбросов NOx двигатели с непосредственным впрыском оборудуют специальными системами нейтрализации.

Одна из попыток решения проблемы экологической безопасности автомобильных двигателей предпринята фирмой Orbital Engine Company (ОЕС) применительно к двухтактному двигателю. В системе впрыска ОЕС топливо сначала поступает в смесительную камеру пневматической форсунки, установленной в камере сгорания сферической формы. Туда же под давлением 0, 5 МПа подается сжатый компрессором воздух. В начале такта сжатия воздух, поступающий в смесительную камеру форсунки, захватывает топливо и через распылитель переносит в камеру сгорания, обеспечивая, благодаря критической скорости истечения воздуха, молекулярный уровень распыления топлива. Сферическая форма камеры сгорания обеспечивает на частичных нагрузках глубокое расслоение заряда (до состава смеси от 25: 1 до 29: 1).

В двигателях фирмы Mazda (1, 5 л) для обеднения топливовоздушной смеси используются такие технические решения, как применение четырехклапанного газораспределительного механизма с системой формирования сложного управляемого вихря внутри камеры сгорания; системы распределенного высокодисперсного впрыска топлива; системы зажигания высокой энергии; микропроцессорного управления. В результате двигатель может работать на очень бедных смесях с воздухо-топливным соотношением 25: 1.

Изменение конструкции впускного трубопровода с подогревом воздуха на входе в карбюратор. Мощностные, экономические и экологические показатели ДВС зависят в определенной мере от конструкции впускного трубопровода, режима подогрева воздуха на входе в карбюратор и движущейся по этому трубопроводу топливовоздушной смеси, поскольку отклонения температуры и давления воздуха от средних значений, для которых подобрана регулировка карбюратора, приводят к увеличению расхода топлива и повышению выброса токсичных веществ с О Г. В связи с этим рекомендуется оснащать ДВС устройствами для регулируемого подогрева воздуха и топливовоздушной смеси. При этом на режимах частичных нагрузок ДВС следует поддерживать постоянную температуру воздуха 35—40 °С, а на полных нагрузках предусматривать подачу только холодного воздуха или частичную добавку подогретого воздуха. Интенсивный подогрев топливовоздушной смеси во впускных трубопроводах можно осуществить с помощью ОГ или использовать электрический подогреватель мощностью порядка 180 Вт. В последнем случае достигается достаточное уменьшение времени прогрева ДВС, а расход топлива при его пуске уменьшается на 30 %.

Наряду с рассмотренным к мероприятиям, направленным на повышение экологичности конструкции ДВС, относятся: система вентиляции картера, система рециркуляции ОГ, подача дополнительного воздуха в выпускной трубопровод для дожигания токсичных продуктов неполного сгорания топлива, улавливание топливных испарений из системы питания.

Перспективными техническими направлениями при разработке ДВС в части повышения их экологических качеств считаются: обеспечение вихревого движения заряда топливовоздушной смеси, ультразвуковое распыление топлива и ионизация, интенсификация искрового разряда, применение электронной системы управления ДВС и наддув.

Вихревое движение заряда обеспечивается винтовым движением потока впускаемой рабочей смеси, которое из-за специально подобранной формы камеры сгорания сохраняется до момента подачи искры, обеспечивая активную газодинамическую подготовку заряда бедной топливовоздушной смеси к воспламенению и горению. Повышение стабильности сгорания при этом на 10—15 % позволяет снизить расход топлива и токсичность ОГ.

При ионизации топлива, воздуха или горючей смеси появляются возбужденные атомы, оказывающие влияние на процесс сгорания. Ионизатор размещают между карбюратором и бензиновым насосом. Протекающее через ионизатор топливо соприкасается с электродом в стенке, подводимый к нему заряд улавливается частицами топлива, которые затем проходят через сильное магнитное поле, создаваемое находящимися внутри ионизатора постоянными магнитами. Под влиянием магнитного поля увеличивается электростатический заряд и изменяется структура частиц топлива. Вследствие этого сгорание топлива происходит наиболее полно, нагара образуется меньше.

Интенсификация искрового разряда связана с применением электронных систем зажигания для ДВС, обладающих возможностью повышения энергии искрового разряда. При этом показатели топливной экономичности и токсичности ОГ здесь примерно такие, как у двигателей с форкамерно-факельным зажиганием, и в реальных эксплуатационных условиях использование повышенной энергии искрового разряда позволяет уменьшить расход топлива на 2—5 % и снизить выброс углеводородов с ОГ.

Назад Вперед

Категория: Рефераты / Экология

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.