Переходные структуры стали

0

Ввиду того что структурные превращения, происходящие при охлаждении стали, совершаются не мгновенно, то быстрым охлаждением они могут быть частично или полностью задержаны, так как при низких температурах подвижность атомов уменьшается. Увеличение скорости охлаждения приводит к возникновению переходных между аустенитом и перлитом структур; таких структур в зависимости от скорости охлаждения может быть много, наиболее-типичные из них получили названия мартенсита, троостита и сорбита.

Выше уже было сказано, что с увеличением скорости охлаждения критические точки стали понижаются. На фиг. 104 даны кривые охлаждения эвтектоидной стали для различных скоростей охлаждения. Замечательно, что при некоторой достаточно большой скорости охлаждения на кривой охлаждения появляется еще одна критическая точка при 240° — точка М. Дальнейшее увеличение скорости охлаждения приводит к тому, что на кривой охлаждения остается только одна критическая точка — точка М.

 

Переходные структуры стали

 

Изучение микроструктуры показывает, что сначала увеличение скорости охлаждения в соответствии с общей теорией кристаллизации приводит только к измельчению структуры — возникают структуры сорбита, затем троостита, отличающиеся от перлита своим более тонким строением. Появление на кривой охлаждения точки М означает, что превращение аустенита при высоких температурах Ar1, приводящее к возникновению структур перлитного типа, не заканчивается полностью, и при температуре точки М этот переохлажденный аустенит превращается в мартенсит. Превращение аустенита в мартенсит совершается очень быстро, поскольку при этом происходит только перестройка решетки гранецентрированной кубической (аустенит) в объемноцентрированную (мартенсит). Поэтому изменение скорости охлаждения к заметному смещению точки М не приводит. Механизм превращения аустенита в мартенсит описан в работах чл.-корр. АН России Г. В. Курдюмова.


Аустенит. Аустенитом называется твердый раствор на основе у-Fe. В углеродистой стали даже очень быстрым охлаждением нельзя зафиксировать структуру аустенита. Однако присутствие в сплаве специальных примесей, например марганца, способствует получению аустенитной структуры. На фиг. 106 дана микрофотография аустенитной структуры, полученной охлаждением в ледяной воде стали, содержащей 2,0% С и 2,2% Мn; температура нагрева образца перед охлаждением равна 1050°.

 

Переходные структуры стали

 

Аустенит характеризуется низким пределом упругости, большой вязкостью, хорошей сопротивляемостью удару и истиранию, максимальной по сравнению с другими структурами стали плотностью. Аустенит немагнитен и обладает минимальной по сравнению с другими структурами электропроводностью.

Кристаллическая решетка аустенита — куб с центрированными гранями, т. е. решетка, свойственная железу в модификации у; она составлена из атомов железа, между которыми расположены атомы углерода (твердый раствор внедрения).

Мартенсит. Мартенситная структура получается при весьма быстром охлаждении стали (несколько сот градусов в секунду). При такой скорости охлаждения превращение аустенита происходит при температурах ниже 350—300°, и возникает типичное для мартенсита игольчатое строение.

На фиг. 107 представлена структура мартенсита. Мартенсит обладает твердостью 600—700 по Бринелю, высоким пределом прочности, малой вязкостью и большой хрупкостью. Мартенсит магнитен; электропроводность стали, закаленной на мартенсит, значительно меньше, чем электропроводность медленно охлажденной (отожженной) стали. Работами советских ученых Н. Т. Гудцова, Г. В. Курдюмова и Н. Я. Селякова установлено, что мартенсит представляет собой пересыщенный твердый раствор углерода в x-Fe. За счет наличия в мартенсите углерода кристаллическая решетка мартенсита искажена и представляет собой тетрагональную объемноцентрированную решетку, в которую внедрены атомы углерода. Степень тетрагональности мартенсита (т. е. разница постоянных решетки а и с) зависит от количества содержащегося в нем углерода; в стали с 1,7% углерода отношение с:а достигает величины 1,08.

При образовании мартенситной структуры наблюдается изменение удельного объема стали в сторону увеличения, результатом чего являются внутренние напряжения в материале. Чем быстрее ведется охлаждение, чем выше температура, с которой начинается охлаждение и чем больше углерода содержится в стали, тем больше может быть увеличение удельного объема стали при закалке. Однако те же факторы — увеличение содержания углерода в стали, увеличение скорости охлаждения — могут привести к сохранению в структуре большего количества остаточного аустенита, т. е. фазы с минимальным удельным объемом. Цифры, иллюстрирующие взаимную связь между всеми этими факторами, даны в табл. 10.

Переходные структуры стали

Структура мартенсита является типичной для сильно закаленной стали. Поскольку мартенсит в стали является структурой метастабильной (т. е. нeустойчивой), то при нагреве (отпуске) закаленной стали происходит процесс выделения углерода из мартенсита и образование зерен цементита. Это приводит к возникновению структуры троостита отпуска и сорбита отпуска.

Троостит. Структура троостита закалки получается при менее быстром охлаждении, чем требуемое для получения мартенситной структуры.

Критическая точка А r, снижается до 500—550°. Подобная структура может быть также получена при нагреве закаленной на мартенсит стали до температуры ниже 400° (троостит отпуска — зернистого строения). Троостит менее хрупок и тверд, чем мартенсит.

Троостит представляет собой тонкодисперсную смесь цементита и феррита.

На фиг. 108 представлена структура быстроохлажденной стали (темные участки — троостит, светлые — мартенсит).

Переходные структуры стали

Сорбит. Сорбитная структура получается при еще меньшей скорости охлаждения стали (сорбит закалки — пластинчатого строения). Критическая точка Аr1 снижается незначительно. Сорбит может быть получен и при нагреве

мартенсита до 500—650° (сорбит отпуска — зернистого строения). Структура сорбита представлена на фиг. 109. Эта переходная между трооститом и перлитом структура получила название сорбита; она представляет собой различимую под микроскопом механическую смесь двух фаз — феррита и цементита.

Сорбит имеет повышенные предел прочности и твердость при сравнительно высоком пределе упругости.

 

Скачать реферат: Perehodnye-struktury-stali.rar

Пароль на архив: privetstudent.com

 

Категория: Рефераты / Производство

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.